resym / app.py
ejschwartz's picture
requirements
09910fb
raw
history blame
710 Bytes
import gradio as gr
import spaces
import torch
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
hf_key = os.environ['HF_TOKEN']
login(token = hf_key)
tokenizer = AutoTokenizer.from_pretrained('bigcode/starcoderbase-3b', use_auth_token=hf_key)
vardecoder_model = AutoModelForCausalLM.from_pretrained(
"ejschwartz/resym-vardecoder",
torch_dtype=torch.bfloat16, device_map='auto'
)
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' πŸ€”
@spaces.GPU
def greet(n):
print(zero.device) # <-- 'cuda:0' πŸ€—
return f"Hello {zero + n} Tensor"
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
demo.launch()