File size: 3,142 Bytes
01c3073
bbc1fe3
 
01c3073
 
d3eb07d
 
b1dd808
 
3f47af7
 
edab27e
 
 
 
 
 
 
 
 
 
 
fb5ce4e
 
 
 
 
 
edab27e
 
 
 
 
8ea9eda
b1dd808
 
d3eb07d
b1dd808
49a522b
b1dd808
09910fb
b1dd808
d3eb07d
073c7e0
 
 
d3eb07d
e2f9f6a
 
 
 
 
 
 
 
 
 
374968b
b1dd808
01c3073
 
6ab20b3
3f47af7
 
d2a677d
 
fb5ce4e
 
 
6ab20b3
 
 
 
 
 
 
3f47af7
894ff3a
6ab20b3
bbc1fe3
4954b56
bbc1fe3
4954b56
 
 
 
 
 
 
 
bbc1fe3
4954b56
 
 
 
 
bbc1fe3
894ff3a
6ab20b3
bbc1fe3
4954b56
 
 
 
e2f9f6a
4954b56
6ab20b3
 
edab27e
4954b56
01c3073
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
import json
import os
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

import huggingface_hub

import prep_decompiled

description = """# ReSym Test Space

This is a test space of the models from the [ReSym
artifacts](https://github.com/lt-asset/resym).  Sadly, at the time I am writing
this, not all of ReSym is publicly available; specifically, the Prolog component
is [not available](https://github.com/lt-asset/resym/issues/2).

This space simply performs inference on the two pretrained models available as
part of the ReSym artifacts. It takes a variable name and some decompiled code
as input, and outputs the variable type and other information.

## Disclaimer

I'm not a ReSym developer and I may have messed something up.  In particular,
you must prompt the variable names in the decompiled code as part of the prompt,
and I reused some of their own code to do this.

## Todo

* Add support for FieldDecoder model

"""

hf_key = os.environ["HF_TOKEN"]
huggingface_hub.login(token=hf_key)

tokenizer = AutoTokenizer.from_pretrained(
    "bigcode/starcoderbase-3b"
)
vardecoder_model = AutoModelForCausalLM.from_pretrained(
    "ejschwartz/resym-vardecoder", torch_dtype=torch.bfloat16, device_map="auto"
)
fielddecoder_model = AutoModelForCausalLM.from_pretrained(
    "ejschwartz/resym-vardecoder", torch_dtype=torch.bfloat16, device_map="auto"
)

example = r"""__int64 __fastcall sub_410D81(__int64 a1, __int64 a2, __int64 a3)
{
int v4; // [rsp+20h] [rbp-20h] BYREF
__int64 v5; // [rsp+28h] [rbp-18h]

if ( !a1 || !a2 || !a3 )
return 0LL;
v4 = 5;
v5 = a3;
return sub_411142(a1, a2, &v4);
}"""


@spaces.GPU
def infer(code):

    splitcode = code.splitlines()
    bodyvars = [v['name'] for v in prep_decompiled.extract_comments(splitcode) if "name" in v]
    argvars = [v['name'] for v in prep_decompiled.parse_signature(splitcode) if "name" in v]
    vars = argvars + bodyvars
    #comments = prep_decompiled.extract_comments(splitcode)
    #sig = prep_decompiled.parse_signature(splitcode)
    #print(f"vars {vars}")

    varstring = ", ".join([f"`{v}`" for v in vars])

    prompt = f"What are the original name and data types of variables {varstring}?\n```{code}\n```"

    var_name = vars[0]

    prompt = code + var_name + ":"
    print(prompt)

    input_ids = tokenizer.encode(prompt, return_tensors="pt").cuda()[:, : 8192 - 1024]
    output = vardecoder_model.generate(
        input_ids=input_ids,
        max_new_tokens=1024,
        num_beams=4,
        num_return_sequences=1,
        do_sample=False,
        early_stopping=False,
        pad_token_id=0,
        eos_token_id=0,
    )[0]
    output = tokenizer.decode(
        output[input_ids.size(1) :],
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )

    output = var_name + ":" + output
    return output, varstring


demo = gr.Interface(
    fn=infer,
    inputs=[
        gr.Textbox(lines=10, value=example),
    ],
    outputs=[gr.Text(label="Var Decoder Output"),
             gr.Text(label="Generated Variable List")],
    description=description
)
demo.launch()