Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,952 Bytes
01c3073 bbc1fe3 01c3073 d3eb07d b1dd808 3f47af7 8ea9eda b1dd808 d3eb07d b1dd808 49a522b b1dd808 09910fb b1dd808 d3eb07d 3f47af7 374968b b1dd808 01c3073 894ff3a 3f47af7 894ff3a bbc1fe3 4954b56 bbc1fe3 4954b56 bbc1fe3 4954b56 bbc1fe3 894ff3a bbc1fe3 4954b56 894ff3a 4954b56 01c3073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
import json
import os
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import huggingface_hub
import prep_decompiled
print("Hello!")
hf_key = os.environ["HF_TOKEN"]
huggingface_hub.login(token=hf_key)
tokenizer = AutoTokenizer.from_pretrained(
"bigcode/starcoderbase-3b"
)
vardecoder_model = AutoModelForCausalLM.from_pretrained(
"ejschwartz/resym-vardecoder", torch_dtype=torch.bfloat16, device_map="auto"
)
example = """{
"input": "What are the original name and data type of variables `a1`, `a2`, `k`, `j`, `i`?\n```\n_BYTE *__fastcall sub_4022CD(_BYTE *a1, __int64 a2)\n{\n_BYTE *result; // rax\n__int16 v4; // [rsp+1Ch] [rbp-14h]\nunsigned __int16 v5; // [rsp+1Eh] [rbp-12h]\nunsigned __int16 v6; // [rsp+20h] [rbp-10h]\nunsigned __int16 v7; // [rsp+22h] [rbp-Eh]\nunsigned int k; // [rsp+24h] [rbp-Ch]\nunsigned int j; // [rsp+28h] [rbp-8h]\nunsigned int i; // [rsp+2Ch] [rbp-4h]\n\nfor ( i = 0; i <= 2; ++i )\n{\nfor ( j = 0; j <= 0x3F; ++j )\n{\nfor ( k = 0; k <= 3; ++k )\n{\n*(&v4 + k) = *(_WORD *)(a2 + 2 * (k + 4 * j + ((unsigned __int64)i << 8)));\n*(&v4 + k) += (*(&v4 + k) >> 15) & 0xD01;\n*(&v4 + k) = ((((unsigned __int16)*(&v4 + k) << 10) + 1664) / 0xD01u) & 0x3FF;\n}\n*a1 = v4;\na1[1] = (4 * v5) | HIBYTE(v4);\na1[2] = (16 * v6) | (v5 >> 6);\na1[3] = ((_BYTE)v7 << 6) | (v6 >> 4);\nresult = a1 + 4;\na1[4] = v7 >> 2;\na1 += 5;\n}\n}\nreturn result;\n}\n```",
"output": "a1: r, uint8_t*\na2: a, const polyvec*\nk: t, uint16_t\nj: -, -\ni: k, unsigned int",
"funname": "pqcrystals_kyber768_ref_polyvec_compress",
"bin": "6ea440a6c772bc0d6a6089c9ff33ae31da13daf3b72acbe175674b0bb21987ed",
"proj": "pq-crystals/kyber",
"cluster_var": {
"array": [
[
"k",
"j"
]
]
}
}"""
@spaces.GPU
def infer(var_name, code):
splitcode = code.splitlines()
comments = prep_decompiled.extract_comments(splitcode)
sig = prep_decompiled.parse_signature(splitcode)
print(f"comments={comments} sig={sig}")
#line = json.loads(input)
#first_token = line["output"].split(":")[0]
prompt = code + var_name + ":"
input_ids = tokenizer.encode(prompt, return_tensors="pt").cuda()[:, : 8192 - 1024]
output = vardecoder_model.generate(
input_ids=input_ids,
max_new_tokens=1024,
num_beams=4,
num_return_sequences=1,
do_sample=False,
early_stopping=False,
pad_token_id=0,
eos_token_id=0,
)[0]
output = tokenizer.decode(
output[input_ids.size(1) :],
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
output = var_name + ":" + output
return output
demo = gr.Interface(
fn=infer,
inputs=[
gr.Text(label="First Token", value="a1"),
gr.Textbox(lines=10, value=json.loads(example)['input']),
],
outputs=gr.Text(label="Var Decoder Output"),
)
demo.launch()
|