Spaces:
Sleeping
Sleeping
Commit
·
2093772
1
Parent(s):
a2b5b44
Upload 2 files
Browse files
TTS/vocoder/models/deepmind_version.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from utils.display import *
|
| 5 |
+
from utils.dsp import *
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class WaveRNN(nn.Module) :
|
| 9 |
+
def __init__(self, hidden_size=896, quantisation=256) :
|
| 10 |
+
super(WaveRNN, self).__init__()
|
| 11 |
+
|
| 12 |
+
self.hidden_size = hidden_size
|
| 13 |
+
self.split_size = hidden_size // 2
|
| 14 |
+
|
| 15 |
+
# The main matmul
|
| 16 |
+
self.R = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
| 17 |
+
|
| 18 |
+
# Output fc layers
|
| 19 |
+
self.O1 = nn.Linear(self.split_size, self.split_size)
|
| 20 |
+
self.O2 = nn.Linear(self.split_size, quantisation)
|
| 21 |
+
self.O3 = nn.Linear(self.split_size, self.split_size)
|
| 22 |
+
self.O4 = nn.Linear(self.split_size, quantisation)
|
| 23 |
+
|
| 24 |
+
# Input fc layers
|
| 25 |
+
self.I_coarse = nn.Linear(2, 3 * self.split_size, bias=False)
|
| 26 |
+
self.I_fine = nn.Linear(3, 3 * self.split_size, bias=False)
|
| 27 |
+
|
| 28 |
+
# biases for the gates
|
| 29 |
+
self.bias_u = nn.Parameter(torch.zeros(self.hidden_size))
|
| 30 |
+
self.bias_r = nn.Parameter(torch.zeros(self.hidden_size))
|
| 31 |
+
self.bias_e = nn.Parameter(torch.zeros(self.hidden_size))
|
| 32 |
+
|
| 33 |
+
# display num params
|
| 34 |
+
self.num_params()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def forward(self, prev_y, prev_hidden, current_coarse) :
|
| 38 |
+
|
| 39 |
+
# Main matmul - the projection is split 3 ways
|
| 40 |
+
R_hidden = self.R(prev_hidden)
|
| 41 |
+
R_u, R_r, R_e, = torch.split(R_hidden, self.hidden_size, dim=1)
|
| 42 |
+
|
| 43 |
+
# Project the prev input
|
| 44 |
+
coarse_input_proj = self.I_coarse(prev_y)
|
| 45 |
+
I_coarse_u, I_coarse_r, I_coarse_e = \
|
| 46 |
+
torch.split(coarse_input_proj, self.split_size, dim=1)
|
| 47 |
+
|
| 48 |
+
# Project the prev input and current coarse sample
|
| 49 |
+
fine_input = torch.cat([prev_y, current_coarse], dim=1)
|
| 50 |
+
fine_input_proj = self.I_fine(fine_input)
|
| 51 |
+
I_fine_u, I_fine_r, I_fine_e = \
|
| 52 |
+
torch.split(fine_input_proj, self.split_size, dim=1)
|
| 53 |
+
|
| 54 |
+
# concatenate for the gates
|
| 55 |
+
I_u = torch.cat([I_coarse_u, I_fine_u], dim=1)
|
| 56 |
+
I_r = torch.cat([I_coarse_r, I_fine_r], dim=1)
|
| 57 |
+
I_e = torch.cat([I_coarse_e, I_fine_e], dim=1)
|
| 58 |
+
|
| 59 |
+
# Compute all gates for coarse and fine
|
| 60 |
+
u = F.sigmoid(R_u + I_u + self.bias_u)
|
| 61 |
+
r = F.sigmoid(R_r + I_r + self.bias_r)
|
| 62 |
+
e = F.tanh(r * R_e + I_e + self.bias_e)
|
| 63 |
+
hidden = u * prev_hidden + (1. - u) * e
|
| 64 |
+
|
| 65 |
+
# Split the hidden state
|
| 66 |
+
hidden_coarse, hidden_fine = torch.split(hidden, self.split_size, dim=1)
|
| 67 |
+
|
| 68 |
+
# Compute outputs
|
| 69 |
+
out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
|
| 70 |
+
out_fine = self.O4(F.relu(self.O3(hidden_fine)))
|
| 71 |
+
|
| 72 |
+
return out_coarse, out_fine, hidden
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def generate(self, seq_len):
|
| 76 |
+
with torch.no_grad():
|
| 77 |
+
# First split up the biases for the gates
|
| 78 |
+
b_coarse_u, b_fine_u = torch.split(self.bias_u, self.split_size)
|
| 79 |
+
b_coarse_r, b_fine_r = torch.split(self.bias_r, self.split_size)
|
| 80 |
+
b_coarse_e, b_fine_e = torch.split(self.bias_e, self.split_size)
|
| 81 |
+
|
| 82 |
+
# Lists for the two output seqs
|
| 83 |
+
c_outputs, f_outputs = [], []
|
| 84 |
+
|
| 85 |
+
# Some initial inputs
|
| 86 |
+
out_coarse = torch.LongTensor([0]).cuda()
|
| 87 |
+
out_fine = torch.LongTensor([0]).cuda()
|
| 88 |
+
|
| 89 |
+
# We'll meed a hidden state
|
| 90 |
+
hidden = self.init_hidden()
|
| 91 |
+
|
| 92 |
+
# Need a clock for display
|
| 93 |
+
start = time.time()
|
| 94 |
+
|
| 95 |
+
# Loop for generation
|
| 96 |
+
for i in range(seq_len) :
|
| 97 |
+
|
| 98 |
+
# Split into two hidden states
|
| 99 |
+
hidden_coarse, hidden_fine = \
|
| 100 |
+
torch.split(hidden, self.split_size, dim=1)
|
| 101 |
+
|
| 102 |
+
# Scale and concat previous predictions
|
| 103 |
+
out_coarse = out_coarse.unsqueeze(0).float() / 127.5 - 1.
|
| 104 |
+
out_fine = out_fine.unsqueeze(0).float() / 127.5 - 1.
|
| 105 |
+
prev_outputs = torch.cat([out_coarse, out_fine], dim=1)
|
| 106 |
+
|
| 107 |
+
# Project input
|
| 108 |
+
coarse_input_proj = self.I_coarse(prev_outputs)
|
| 109 |
+
I_coarse_u, I_coarse_r, I_coarse_e = \
|
| 110 |
+
torch.split(coarse_input_proj, self.split_size, dim=1)
|
| 111 |
+
|
| 112 |
+
# Project hidden state and split 6 ways
|
| 113 |
+
R_hidden = self.R(hidden)
|
| 114 |
+
R_coarse_u , R_fine_u, \
|
| 115 |
+
R_coarse_r, R_fine_r, \
|
| 116 |
+
R_coarse_e, R_fine_e = torch.split(R_hidden, self.split_size, dim=1)
|
| 117 |
+
|
| 118 |
+
# Compute the coarse gates
|
| 119 |
+
u = F.sigmoid(R_coarse_u + I_coarse_u + b_coarse_u)
|
| 120 |
+
r = F.sigmoid(R_coarse_r + I_coarse_r + b_coarse_r)
|
| 121 |
+
e = F.tanh(r * R_coarse_e + I_coarse_e + b_coarse_e)
|
| 122 |
+
hidden_coarse = u * hidden_coarse + (1. - u) * e
|
| 123 |
+
|
| 124 |
+
# Compute the coarse output
|
| 125 |
+
out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
|
| 126 |
+
posterior = F.softmax(out_coarse, dim=1)
|
| 127 |
+
distrib = torch.distributions.Categorical(posterior)
|
| 128 |
+
out_coarse = distrib.sample()
|
| 129 |
+
c_outputs.append(out_coarse)
|
| 130 |
+
|
| 131 |
+
# Project the [prev outputs and predicted coarse sample]
|
| 132 |
+
coarse_pred = out_coarse.float() / 127.5 - 1.
|
| 133 |
+
fine_input = torch.cat([prev_outputs, coarse_pred.unsqueeze(0)], dim=1)
|
| 134 |
+
fine_input_proj = self.I_fine(fine_input)
|
| 135 |
+
I_fine_u, I_fine_r, I_fine_e = \
|
| 136 |
+
torch.split(fine_input_proj, self.split_size, dim=1)
|
| 137 |
+
|
| 138 |
+
# Compute the fine gates
|
| 139 |
+
u = F.sigmoid(R_fine_u + I_fine_u + b_fine_u)
|
| 140 |
+
r = F.sigmoid(R_fine_r + I_fine_r + b_fine_r)
|
| 141 |
+
e = F.tanh(r * R_fine_e + I_fine_e + b_fine_e)
|
| 142 |
+
hidden_fine = u * hidden_fine + (1. - u) * e
|
| 143 |
+
|
| 144 |
+
# Compute the fine output
|
| 145 |
+
out_fine = self.O4(F.relu(self.O3(hidden_fine)))
|
| 146 |
+
posterior = F.softmax(out_fine, dim=1)
|
| 147 |
+
distrib = torch.distributions.Categorical(posterior)
|
| 148 |
+
out_fine = distrib.sample()
|
| 149 |
+
f_outputs.append(out_fine)
|
| 150 |
+
|
| 151 |
+
# Put the hidden state back together
|
| 152 |
+
hidden = torch.cat([hidden_coarse, hidden_fine], dim=1)
|
| 153 |
+
|
| 154 |
+
# Display progress
|
| 155 |
+
speed = (i + 1) / (time.time() - start)
|
| 156 |
+
stream('Gen: %i/%i -- Speed: %i', (i + 1, seq_len, speed))
|
| 157 |
+
|
| 158 |
+
coarse = torch.stack(c_outputs).squeeze(1).cpu().data.numpy()
|
| 159 |
+
fine = torch.stack(f_outputs).squeeze(1).cpu().data.numpy()
|
| 160 |
+
output = combine_signal(coarse, fine)
|
| 161 |
+
|
| 162 |
+
return output, coarse, fine
|
| 163 |
+
|
| 164 |
+
def init_hidden(self, batch_size=1) :
|
| 165 |
+
return torch.zeros(batch_size, self.hidden_size).cuda()
|
| 166 |
+
|
| 167 |
+
def num_params(self) :
|
| 168 |
+
parameters = filter(lambda p: p.requires_grad, self.parameters())
|
| 169 |
+
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
|
| 170 |
+
print('Trainable Parameters: %.3f million' % parameters)
|
TTS/vocoder/models/fatchord_version.py
ADDED
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from vocoder.distribution import sample_from_discretized_mix_logistic
|
| 5 |
+
from vocoder.display import *
|
| 6 |
+
from vocoder.audio import *
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ResBlock(nn.Module):
|
| 10 |
+
def __init__(self, dims):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
|
| 13 |
+
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
|
| 14 |
+
self.batch_norm1 = nn.BatchNorm1d(dims)
|
| 15 |
+
self.batch_norm2 = nn.BatchNorm1d(dims)
|
| 16 |
+
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
residual = x
|
| 19 |
+
x = self.conv1(x)
|
| 20 |
+
x = self.batch_norm1(x)
|
| 21 |
+
x = F.relu(x)
|
| 22 |
+
x = self.conv2(x)
|
| 23 |
+
x = self.batch_norm2(x)
|
| 24 |
+
return x + residual
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class MelResNet(nn.Module):
|
| 28 |
+
def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
|
| 29 |
+
super().__init__()
|
| 30 |
+
k_size = pad * 2 + 1
|
| 31 |
+
self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
|
| 32 |
+
self.batch_norm = nn.BatchNorm1d(compute_dims)
|
| 33 |
+
self.layers = nn.ModuleList()
|
| 34 |
+
for i in range(res_blocks):
|
| 35 |
+
self.layers.append(ResBlock(compute_dims))
|
| 36 |
+
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
|
| 37 |
+
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
x = self.conv_in(x)
|
| 40 |
+
x = self.batch_norm(x)
|
| 41 |
+
x = F.relu(x)
|
| 42 |
+
for f in self.layers: x = f(x)
|
| 43 |
+
x = self.conv_out(x)
|
| 44 |
+
return x
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class Stretch2d(nn.Module):
|
| 48 |
+
def __init__(self, x_scale, y_scale):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.x_scale = x_scale
|
| 51 |
+
self.y_scale = y_scale
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
b, c, h, w = x.size()
|
| 55 |
+
x = x.unsqueeze(-1).unsqueeze(3)
|
| 56 |
+
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
|
| 57 |
+
return x.view(b, c, h * self.y_scale, w * self.x_scale)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class UpsampleNetwork(nn.Module):
|
| 61 |
+
def __init__(self, feat_dims, upsample_scales, compute_dims,
|
| 62 |
+
res_blocks, res_out_dims, pad):
|
| 63 |
+
super().__init__()
|
| 64 |
+
total_scale = np.cumproduct(upsample_scales)[-1]
|
| 65 |
+
self.indent = pad * total_scale
|
| 66 |
+
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
|
| 67 |
+
self.resnet_stretch = Stretch2d(total_scale, 1)
|
| 68 |
+
self.up_layers = nn.ModuleList()
|
| 69 |
+
for scale in upsample_scales:
|
| 70 |
+
k_size = (1, scale * 2 + 1)
|
| 71 |
+
padding = (0, scale)
|
| 72 |
+
stretch = Stretch2d(scale, 1)
|
| 73 |
+
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
|
| 74 |
+
conv.weight.data.fill_(1. / k_size[1])
|
| 75 |
+
self.up_layers.append(stretch)
|
| 76 |
+
self.up_layers.append(conv)
|
| 77 |
+
|
| 78 |
+
def forward(self, m):
|
| 79 |
+
aux = self.resnet(m).unsqueeze(1)
|
| 80 |
+
aux = self.resnet_stretch(aux)
|
| 81 |
+
aux = aux.squeeze(1)
|
| 82 |
+
m = m.unsqueeze(1)
|
| 83 |
+
for f in self.up_layers: m = f(m)
|
| 84 |
+
m = m.squeeze(1)[:, :, self.indent:-self.indent]
|
| 85 |
+
return m.transpose(1, 2), aux.transpose(1, 2)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class WaveRNN(nn.Module):
|
| 89 |
+
def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors,
|
| 90 |
+
feat_dims, compute_dims, res_out_dims, res_blocks,
|
| 91 |
+
hop_length, sample_rate, mode='RAW'):
|
| 92 |
+
super().__init__()
|
| 93 |
+
self.mode = mode
|
| 94 |
+
self.pad = pad
|
| 95 |
+
if self.mode == 'RAW' :
|
| 96 |
+
self.n_classes = 2 ** bits
|
| 97 |
+
elif self.mode == 'MOL' :
|
| 98 |
+
self.n_classes = 30
|
| 99 |
+
else :
|
| 100 |
+
RuntimeError("Unknown model mode value - ", self.mode)
|
| 101 |
+
|
| 102 |
+
self.rnn_dims = rnn_dims
|
| 103 |
+
self.aux_dims = res_out_dims // 4
|
| 104 |
+
self.hop_length = hop_length
|
| 105 |
+
self.sample_rate = sample_rate
|
| 106 |
+
|
| 107 |
+
self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad)
|
| 108 |
+
self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims)
|
| 109 |
+
self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
|
| 110 |
+
self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True)
|
| 111 |
+
self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
|
| 112 |
+
self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
|
| 113 |
+
self.fc3 = nn.Linear(fc_dims, self.n_classes)
|
| 114 |
+
|
| 115 |
+
self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False)
|
| 116 |
+
self.num_params()
|
| 117 |
+
|
| 118 |
+
def forward(self, x, mels):
|
| 119 |
+
self.step += 1
|
| 120 |
+
bsize = x.size(0)
|
| 121 |
+
h1 = torch.zeros(1, bsize, self.rnn_dims).cuda()
|
| 122 |
+
h2 = torch.zeros(1, bsize, self.rnn_dims).cuda()
|
| 123 |
+
mels, aux = self.upsample(mels)
|
| 124 |
+
|
| 125 |
+
aux_idx = [self.aux_dims * i for i in range(5)]
|
| 126 |
+
a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
|
| 127 |
+
a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
|
| 128 |
+
a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
|
| 129 |
+
a4 = aux[:, :, aux_idx[3]:aux_idx[4]]
|
| 130 |
+
|
| 131 |
+
x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
|
| 132 |
+
x = self.I(x)
|
| 133 |
+
res = x
|
| 134 |
+
x, _ = self.rnn1(x, h1)
|
| 135 |
+
|
| 136 |
+
x = x + res
|
| 137 |
+
res = x
|
| 138 |
+
x = torch.cat([x, a2], dim=2)
|
| 139 |
+
x, _ = self.rnn2(x, h2)
|
| 140 |
+
|
| 141 |
+
x = x + res
|
| 142 |
+
x = torch.cat([x, a3], dim=2)
|
| 143 |
+
x = F.relu(self.fc1(x))
|
| 144 |
+
|
| 145 |
+
x = torch.cat([x, a4], dim=2)
|
| 146 |
+
x = F.relu(self.fc2(x))
|
| 147 |
+
return self.fc3(x)
|
| 148 |
+
|
| 149 |
+
def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None):
|
| 150 |
+
mu_law = mu_law if self.mode == 'RAW' else False
|
| 151 |
+
progress_callback = progress_callback or self.gen_display
|
| 152 |
+
|
| 153 |
+
self.eval()
|
| 154 |
+
output = []
|
| 155 |
+
start = time.time()
|
| 156 |
+
rnn1 = self.get_gru_cell(self.rnn1)
|
| 157 |
+
rnn2 = self.get_gru_cell(self.rnn2)
|
| 158 |
+
|
| 159 |
+
with torch.no_grad():
|
| 160 |
+
mels = mels.cuda()
|
| 161 |
+
wave_len = (mels.size(-1) - 1) * self.hop_length
|
| 162 |
+
mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both')
|
| 163 |
+
mels, aux = self.upsample(mels.transpose(1, 2))
|
| 164 |
+
|
| 165 |
+
if batched:
|
| 166 |
+
mels = self.fold_with_overlap(mels, target, overlap)
|
| 167 |
+
aux = self.fold_with_overlap(aux, target, overlap)
|
| 168 |
+
|
| 169 |
+
b_size, seq_len, _ = mels.size()
|
| 170 |
+
|
| 171 |
+
h1 = torch.zeros(b_size, self.rnn_dims).cuda()
|
| 172 |
+
h2 = torch.zeros(b_size, self.rnn_dims).cuda()
|
| 173 |
+
x = torch.zeros(b_size, 1).cuda()
|
| 174 |
+
|
| 175 |
+
d = self.aux_dims
|
| 176 |
+
aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]
|
| 177 |
+
|
| 178 |
+
for i in range(seq_len):
|
| 179 |
+
|
| 180 |
+
m_t = mels[:, i, :]
|
| 181 |
+
|
| 182 |
+
a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
|
| 183 |
+
|
| 184 |
+
x = torch.cat([x, m_t, a1_t], dim=1)
|
| 185 |
+
x = self.I(x)
|
| 186 |
+
h1 = rnn1(x, h1)
|
| 187 |
+
|
| 188 |
+
x = x + h1
|
| 189 |
+
inp = torch.cat([x, a2_t], dim=1)
|
| 190 |
+
h2 = rnn2(inp, h2)
|
| 191 |
+
|
| 192 |
+
x = x + h2
|
| 193 |
+
x = torch.cat([x, a3_t], dim=1)
|
| 194 |
+
x = F.relu(self.fc1(x))
|
| 195 |
+
|
| 196 |
+
x = torch.cat([x, a4_t], dim=1)
|
| 197 |
+
x = F.relu(self.fc2(x))
|
| 198 |
+
|
| 199 |
+
logits = self.fc3(x)
|
| 200 |
+
|
| 201 |
+
if self.mode == 'MOL':
|
| 202 |
+
sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2))
|
| 203 |
+
output.append(sample.view(-1))
|
| 204 |
+
# x = torch.FloatTensor([[sample]]).cuda()
|
| 205 |
+
x = sample.transpose(0, 1).cuda()
|
| 206 |
+
|
| 207 |
+
elif self.mode == 'RAW' :
|
| 208 |
+
posterior = F.softmax(logits, dim=1)
|
| 209 |
+
distrib = torch.distributions.Categorical(posterior)
|
| 210 |
+
|
| 211 |
+
sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1.
|
| 212 |
+
output.append(sample)
|
| 213 |
+
x = sample.unsqueeze(-1)
|
| 214 |
+
else:
|
| 215 |
+
raise RuntimeError("Unknown model mode value - ", self.mode)
|
| 216 |
+
|
| 217 |
+
if i % 100 == 0:
|
| 218 |
+
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
|
| 219 |
+
progress_callback(i, seq_len, b_size, gen_rate)
|
| 220 |
+
|
| 221 |
+
output = torch.stack(output).transpose(0, 1)
|
| 222 |
+
output = output.cpu().numpy()
|
| 223 |
+
output = output.astype(np.float64)
|
| 224 |
+
|
| 225 |
+
if batched:
|
| 226 |
+
output = self.xfade_and_unfold(output, target, overlap)
|
| 227 |
+
else:
|
| 228 |
+
output = output[0]
|
| 229 |
+
|
| 230 |
+
if mu_law:
|
| 231 |
+
output = decode_mu_law(output, self.n_classes, False)
|
| 232 |
+
if hp.apply_preemphasis:
|
| 233 |
+
output = de_emphasis(output)
|
| 234 |
+
|
| 235 |
+
# Fade-out at the end to avoid signal cutting out suddenly
|
| 236 |
+
fade_out = np.linspace(1, 0, 20 * self.hop_length)
|
| 237 |
+
output = output[:wave_len]
|
| 238 |
+
output[-20 * self.hop_length:] *= fade_out
|
| 239 |
+
|
| 240 |
+
self.train()
|
| 241 |
+
|
| 242 |
+
return output
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def gen_display(self, i, seq_len, b_size, gen_rate):
|
| 246 |
+
pbar = progbar(i, seq_len)
|
| 247 |
+
msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
|
| 248 |
+
stream(msg)
|
| 249 |
+
|
| 250 |
+
def get_gru_cell(self, gru):
|
| 251 |
+
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
|
| 252 |
+
gru_cell.weight_hh.data = gru.weight_hh_l0.data
|
| 253 |
+
gru_cell.weight_ih.data = gru.weight_ih_l0.data
|
| 254 |
+
gru_cell.bias_hh.data = gru.bias_hh_l0.data
|
| 255 |
+
gru_cell.bias_ih.data = gru.bias_ih_l0.data
|
| 256 |
+
return gru_cell
|
| 257 |
+
|
| 258 |
+
def pad_tensor(self, x, pad, side='both'):
|
| 259 |
+
# NB - this is just a quick method i need right now
|
| 260 |
+
# i.e., it won't generalise to other shapes/dims
|
| 261 |
+
b, t, c = x.size()
|
| 262 |
+
total = t + 2 * pad if side == 'both' else t + pad
|
| 263 |
+
padded = torch.zeros(b, total, c).cuda()
|
| 264 |
+
if side == 'before' or side == 'both':
|
| 265 |
+
padded[:, pad:pad + t, :] = x
|
| 266 |
+
elif side == 'after':
|
| 267 |
+
padded[:, :t, :] = x
|
| 268 |
+
return padded
|
| 269 |
+
|
| 270 |
+
def fold_with_overlap(self, x, target, overlap):
|
| 271 |
+
|
| 272 |
+
''' Fold the tensor with overlap for quick batched inference.
|
| 273 |
+
Overlap will be used for crossfading in xfade_and_unfold()
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
x (tensor) : Upsampled conditioning features.
|
| 277 |
+
shape=(1, timesteps, features)
|
| 278 |
+
target (int) : Target timesteps for each index of batch
|
| 279 |
+
overlap (int) : Timesteps for both xfade and rnn warmup
|
| 280 |
+
|
| 281 |
+
Return:
|
| 282 |
+
(tensor) : shape=(num_folds, target + 2 * overlap, features)
|
| 283 |
+
|
| 284 |
+
Details:
|
| 285 |
+
x = [[h1, h2, ... hn]]
|
| 286 |
+
|
| 287 |
+
Where each h is a vector of conditioning features
|
| 288 |
+
|
| 289 |
+
Eg: target=2, overlap=1 with x.size(1)=10
|
| 290 |
+
|
| 291 |
+
folded = [[h1, h2, h3, h4],
|
| 292 |
+
[h4, h5, h6, h7],
|
| 293 |
+
[h7, h8, h9, h10]]
|
| 294 |
+
'''
|
| 295 |
+
|
| 296 |
+
_, total_len, features = x.size()
|
| 297 |
+
|
| 298 |
+
# Calculate variables needed
|
| 299 |
+
num_folds = (total_len - overlap) // (target + overlap)
|
| 300 |
+
extended_len = num_folds * (overlap + target) + overlap
|
| 301 |
+
remaining = total_len - extended_len
|
| 302 |
+
|
| 303 |
+
# Pad if some time steps poking out
|
| 304 |
+
if remaining != 0:
|
| 305 |
+
num_folds += 1
|
| 306 |
+
padding = target + 2 * overlap - remaining
|
| 307 |
+
x = self.pad_tensor(x, padding, side='after')
|
| 308 |
+
|
| 309 |
+
folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda()
|
| 310 |
+
|
| 311 |
+
# Get the values for the folded tensor
|
| 312 |
+
for i in range(num_folds):
|
| 313 |
+
start = i * (target + overlap)
|
| 314 |
+
end = start + target + 2 * overlap
|
| 315 |
+
folded[i] = x[:, start:end, :]
|
| 316 |
+
|
| 317 |
+
return folded
|
| 318 |
+
|
| 319 |
+
def xfade_and_unfold(self, y, target, overlap):
|
| 320 |
+
|
| 321 |
+
''' Applies a crossfade and unfolds into a 1d array.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
y (ndarry) : Batched sequences of audio samples
|
| 325 |
+
shape=(num_folds, target + 2 * overlap)
|
| 326 |
+
dtype=np.float64
|
| 327 |
+
overlap (int) : Timesteps for both xfade and rnn warmup
|
| 328 |
+
|
| 329 |
+
Return:
|
| 330 |
+
(ndarry) : audio samples in a 1d array
|
| 331 |
+
shape=(total_len)
|
| 332 |
+
dtype=np.float64
|
| 333 |
+
|
| 334 |
+
Details:
|
| 335 |
+
y = [[seq1],
|
| 336 |
+
[seq2],
|
| 337 |
+
[seq3]]
|
| 338 |
+
|
| 339 |
+
Apply a gain envelope at both ends of the sequences
|
| 340 |
+
|
| 341 |
+
y = [[seq1_in, seq1_target, seq1_out],
|
| 342 |
+
[seq2_in, seq2_target, seq2_out],
|
| 343 |
+
[seq3_in, seq3_target, seq3_out]]
|
| 344 |
+
|
| 345 |
+
Stagger and add up the groups of samples:
|
| 346 |
+
|
| 347 |
+
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
|
| 348 |
+
|
| 349 |
+
'''
|
| 350 |
+
|
| 351 |
+
num_folds, length = y.shape
|
| 352 |
+
target = length - 2 * overlap
|
| 353 |
+
total_len = num_folds * (target + overlap) + overlap
|
| 354 |
+
|
| 355 |
+
# Need some silence for the rnn warmup
|
| 356 |
+
silence_len = overlap // 2
|
| 357 |
+
fade_len = overlap - silence_len
|
| 358 |
+
silence = np.zeros((silence_len), dtype=np.float64)
|
| 359 |
+
|
| 360 |
+
# Equal power crossfade
|
| 361 |
+
t = np.linspace(-1, 1, fade_len, dtype=np.float64)
|
| 362 |
+
fade_in = np.sqrt(0.5 * (1 + t))
|
| 363 |
+
fade_out = np.sqrt(0.5 * (1 - t))
|
| 364 |
+
|
| 365 |
+
# Concat the silence to the fades
|
| 366 |
+
fade_in = np.concatenate([silence, fade_in])
|
| 367 |
+
fade_out = np.concatenate([fade_out, silence])
|
| 368 |
+
|
| 369 |
+
# Apply the gain to the overlap samples
|
| 370 |
+
y[:, :overlap] *= fade_in
|
| 371 |
+
y[:, -overlap:] *= fade_out
|
| 372 |
+
|
| 373 |
+
unfolded = np.zeros((total_len), dtype=np.float64)
|
| 374 |
+
|
| 375 |
+
# Loop to add up all the samples
|
| 376 |
+
for i in range(num_folds):
|
| 377 |
+
start = i * (target + overlap)
|
| 378 |
+
end = start + target + 2 * overlap
|
| 379 |
+
unfolded[start:end] += y[i]
|
| 380 |
+
|
| 381 |
+
return unfolded
|
| 382 |
+
|
| 383 |
+
def get_step(self) :
|
| 384 |
+
return self.step.data.item()
|
| 385 |
+
|
| 386 |
+
def checkpoint(self, model_dir, optimizer) :
|
| 387 |
+
k_steps = self.get_step() // 1000
|
| 388 |
+
self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer)
|
| 389 |
+
|
| 390 |
+
def log(self, path, msg) :
|
| 391 |
+
with open(path, 'a') as f:
|
| 392 |
+
print(msg, file=f)
|
| 393 |
+
|
| 394 |
+
def load(self, path, optimizer) :
|
| 395 |
+
checkpoint = torch.load(path)
|
| 396 |
+
if "optimizer_state" in checkpoint:
|
| 397 |
+
self.load_state_dict(checkpoint["model_state"])
|
| 398 |
+
optimizer.load_state_dict(checkpoint["optimizer_state"])
|
| 399 |
+
else:
|
| 400 |
+
# Backwards compatibility
|
| 401 |
+
self.load_state_dict(checkpoint)
|
| 402 |
+
|
| 403 |
+
def save(self, path, optimizer) :
|
| 404 |
+
torch.save({
|
| 405 |
+
"model_state": self.state_dict(),
|
| 406 |
+
"optimizer_state": optimizer.state_dict(),
|
| 407 |
+
}, path)
|
| 408 |
+
|
| 409 |
+
def num_params(self, print_out=True):
|
| 410 |
+
parameters = filter(lambda p: p.requires_grad, self.parameters())
|
| 411 |
+
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
|
| 412 |
+
if print_out :
|
| 413 |
+
print('Trainable Parameters: %.3fM' % parameters)
|