Spaces:
Configuration error
Configuration error
File size: 31,217 Bytes
5b07bd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
import streamlit as st
from rdkit.Chem import MACCSkeys
from rdkit import Chem
import numpy as np
import pandas as pd
import xgboost as xgb
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import Dataset
import torch.utils.data
from torch_geometric.data import DataLoader
from torch_geometric.data import Data
import os
from tqdm import tqdm
import pandas as pd
import numpy as np
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import classification_report, confusion_matrix, average_precision_score, roc_auc_score
model_path = 'model/'
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import Dataset
import torch.utils.data
from torch_geometric.data import DataLoader
from torch_geometric.data import Data
from torch_geometric.nn import GATConv, RGCNConv, GCNConv, global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
from sklearn.metrics import f1_score, accuracy_score, average_precision_score, roc_auc_score
import rdkit
from rdkit.Chem.Scaffolds import MurckoScaffold
from itertools import compress
import random
from collections import defaultdict
if torch.cuda.is_available():
map_location=lambda storage, loc: storage.cuda()
else:
map_location='cpu'
import torch
from torch_geometric.nn import GATConv, RGCNConv, GCNConv, global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
from sklearn.metrics import f1_score, accuracy_score, average_precision_score, roc_auc_score, classification_report, confusion_matrix
from sklearn.model_selection import KFold, train_test_split
import rdkit
from rdkit.Chem.Scaffolds import MurckoScaffold
from transformers import AutoModelWithLMHead, AutoTokenizer
import math
# from itertools import compress
# import random
# from collections import defaultdict
import pickle
device = 'cpu'
model_path = 'model/'
adj_max=80
fps_len=167
max_len=120
vocabulary = {'C': 1, 'c': 2, '1': 3, '(': 4, '-': 5, '2': 6, 's': 7, 'N': 8, '=': 9, ')': 10, 'n': 11, '[': 12,
'@': 13,
'H': 14, ']': 15, 'O': 16, 'S': 17, '3': 18, 'l': 19, 'B': 20, 'r': 21, '/': 22, '\\': 23, 'o': 24,
'4': 25,
'5': 26, '6': 27, '7': 28, '+': 29, '.': 30, 'I': 31, 'F': 32, '8': 33, '#': 34, 'P': 35, '9': 36,
'a': 37,
'%': 38, '0': 39, 'i': 40, 'e': 41, 'L': 42, 'K': 43, 't': 44, 'T': 45, 'A': 46, 'g': 47, 'Z': 48,
'M': 49,
'R': 50, 'p': 51, 'b': 52, 'X': 53}
known_drugs = ['O=C(NCCC(O)=O)C(C=C1)=CC=C1/N=N/C(C=C2C(O)=O)=CC=C2OCCOC3=CC=C(NC4=NC=C(C)C(NC5=CC=CC(S(NC(C)(C)C)(=O)=O)=C5)=N4)C=C3',
'OCCOC1=CC=C(NC2=NC=C(C)C(NC3=CC=CC(S(NC(C)(C)C)(=O)=O)=C3)=N2)C=C1',
'C1CCC(C1)C(CC#N)N2C=C(C=N2)C3=C4C=CNC4=NC=N3',
'CC1CCN(CC1N(C)C2=NC=NC3=C2C=CN3)C(=O)CC#N',
'CCS(=O)(=O)N1CC(C1)(CC#N)N2C=C(C=N2)C3=C4C=CNC4=NC=N3',
'C1CC1C(=O)NC2=NN3C(=N2)C=CC=C3C4=CC=C(C=C4)CN5CCS(=O)(=O)CC5',
'CCC1CN(CC1C2=CN=C3N2C4=C(NC=C4)N=C3)C(=O)NCC(F)(F)F',
'OC(COC1=CC=C(NC2=NC=C(C)C(NC3=CC=CC(S(NC(C)(C)C)(=O)=O)=C3)=N2)C=C1)=O',
'O=C(NCCC(O)=O)C(C=C1)=CC=C1/N=N/C(C=C2C(O)=O)=CC=C2OCCOC3=CC=C(NC4=NC=C(C)C(NC5=CC=CC(S(N)(=O)=O)=C5)=N4)C=C3',
'OC1=CC=C(NC2=NC=C(C)C(NC3=CC=CC(S(NC(C)(C)C)(=O)=O)=C3)=N2)C=C1',
'OCCOC1=CC=C(NC2=NC=C(C)C(NC3=CC=CC(S(N)(=O)=O)=C3)=N2)C=C1',
'CC1=CN=C(N=C1NC2=CC(=CC=C2)S(=O)(=O)NC(C)(C)C)NC3=CC=C(C=C3)OCCN4CCCC4',
'C1CCN(C1)CCOC2=C3COCC=CCOCC4=CC(=CC=C4)C5=NC(=NC=C5)NC(=C3)C=C2']
device = torch.device('cpu')
class jak_dataset(Dataset):
def __init__(self, dataframe, max_len=80):
super(jak_dataset, self).__init__()
self.len = len(dataframe)
self.dataframe = dataframe
self.max_len = max_len
def __getitem__(self, idx):
y = 1 if self.dataframe.Activity[idx]==1 else 0
X = torch.zeros(self.max_len)
for idx, atom in enumerate(list(self.dataframe.Smiles[idx])[:self.max_len]):
X[idx] = vocabulary[atom]
return X.long(), y
def __len__(self):
return self.len
class encoder(nn.Module):
def __init__(self, input_length, num_words, embedding_size=32, inner_size=32, output_size=fps_len, stride=1):
super(encoder, self).__init__()
self.input_length = input_length
self.num_words = num_words
self.embedding_size = embedding_size
self.inner_size = inner_size
self.output_size = output_size
self.stride = stride
self.embedding = nn.Embedding(self.num_words + 1, self.embedding_size, padding_idx=0)
self.conv_1 = nn.Conv1d(self.embedding_size, self.inner_size, 1, self.stride)
self.conv_2 = nn.Conv1d(self.embedding_size, self.inner_size, 2, self.stride)
self.conv_3 = nn.Conv1d(self.embedding_size, self.inner_size, 3, self.stride)
self.w = nn.Linear(self.inner_size * 3, self.output_size)
self.activation = nn.LeakyReLU()
self.dropout = nn.Dropout(0.25)
self.init_weights()
def init_weights(self):
torch.nn.init.xavier_uniform_(self.conv_1.weight)
torch.nn.init.xavier_uniform_(self.conv_2.weight)
torch.nn.init.xavier_uniform_(self.conv_3.weight)
torch.nn.init.xavier_uniform_(self.w.weight)
torch.nn.init.xavier_uniform_(self.embedding.weight)
def forward(self, x):
x = self.embedding(x).permute(0, 2, 1)
tri = self.conv_3(x)
bi = self.conv_2(x)
uni = self.conv_1(x)
tri_maxpool = nn.MaxPool1d(tri.shape[2])
bi_maxpool = nn.MaxPool1d(bi.shape[2])
uni_maxpool = nn.MaxPool1d(uni.shape[2])
integrate_feat = torch.cat(
(tri_maxpool(tri).squeeze(2), bi_maxpool(bi).squeeze(2), uni_maxpool(uni).squeeze(2)), dim=1)
#print(integrate_feat.shape)
return self.w(self.activation(integrate_feat))
def generate_scaffold(smiles, include_chirality=False):
"""
Obtain Bemis-Murcko scaffold from smiles
:param smiles:
:param include_chirality:
:return: smiles of scaffold
"""
scaffold = MurckoScaffold.MurckoScaffoldSmiles(
smiles=smiles, includeChirality=include_chirality
)
return scaffold
def random_scaffold_split(
dataset,
smiles_list,
task_idx=None,
null_value=0,
frac_train=0.8,
frac_valid=0.1,
frac_test=0.1,
seed=42,
):
"""
Adapted from https://github.com/pfnet-research/chainer-chemistry/blob/master/\
chainer_chemistry/dataset/splitters/scaffold_splitter.py
Split dataset by Bemis-Murcko scaffolds
This function can also ignore examples containing null values for a
selected task when splitting. Deterministic split
:param dataset: pytorch geometric dataset obj
:param smiles_list: list of smiles corresponding to the dataset obj
:param task_idx: column idx of the data.y tensor. Will filter out
examples with null value in specified task column of the data.y tensor
prior to splitting. If None, then no filtering
:param null_value: float that specifies null value in data.y to filter if
task_idx is provided
:param frac_train:
:param frac_valid:
:param frac_test:
:param seed;
:return: train, valid, test slices of the input dataset obj
"""
np.testing.assert_almost_equal(frac_train + frac_valid + frac_test, 1.0)
if task_idx is not None:
# filter based on null values in task_idx
# get task array
y_task = np.array([data.y[task_idx].item() for data in dataset])
# boolean array that correspond to non null values
non_null = y_task != null_value
smiles_list = list(compress(enumerate(smiles_list), non_null))
else:
non_null = np.ones(len(dataset)) == 1
smiles_list = list(compress(enumerate(smiles_list), non_null))
rng = np.random.RandomState(seed)
scaffolds = defaultdict(list)
for ind, smiles in smiles_list:
scaffold = generate_scaffold(smiles, include_chirality=True)
scaffolds[scaffold].append(ind)
scaffold_sets = rng.permutation(list(scaffolds.values()))
n_total_valid = int(np.floor(frac_valid * len(dataset)))
n_total_test = int(np.floor(frac_test * len(dataset)))
train_idx = []
valid_idx = []
test_idx = []
for scaffold_set in scaffold_sets:
if len(valid_idx) + len(scaffold_set) <= n_total_valid:
valid_idx.extend(scaffold_set)
elif len(test_idx) + len(scaffold_set) <= n_total_test:
test_idx.extend(scaffold_set)
else:
train_idx.extend(scaffold_set)
return train_idx, valid_idx, test_idx
def load_smi_y(enzyme):
try:
path = 'data/' + enzyme + '_' + 'MACCS.csv'
data = pd.read_csv(path)
except:
path = enzyme + '_' + 'MACCS.csv'
data = pd.read_csv(path)
X = data['Smiles']
y = data['Activity']
return X, y
import torch
import torch.nn as nn
import torch.nn.functional as F
class CNNforclassification(nn.Module):
def __init__(self, max_len, voc_len, load_path='model/CNN_encoder_pretrain2.pt',
last_layer_size=fps_len, output_size=2):
super(CNNforclassification, self).__init__()
self.last_layer_size = last_layer_size
self.output_size = output_size
self.pretrained = encoder(max_len, voc_len)
self.pretrained.load_state_dict(
torch.load(load_path, map_location=device))
self.w = nn.Linear(self.last_layer_size, self.output_size)
self.activation = nn.LeakyReLU()
def forward(self, x):
return self.w(self.activation(self.pretrained(x)))
def CNN_predict(enzyme, smi):
ml = 'CNN'
known_drugs = [smi]
file_path = 'model/' + ml + '_' + enzyme + '.pt'
print(file_path)
weight_dict = {1: torch.tensor([3.0, 1.0]), 2: torch.tensor([2.0, 1.0]), 3: torch.tensor([2.0, 1.0]),
4: torch.tensor([2.0, 1.0])}
model = CNNforclassification(max_len, len(vocabulary))
model.load_state_dict(torch.load(file_path, map_location=torch.device('cpu')))
model.eval()
params = {'batch_size':16, 'shuffle':False, 'drop_last':False, 'num_workers':0}
known_df = pd.DataFrame(known_drugs)
known_df.columns = ['Smiles']
known_df['Activity'] = 0
known_data = jak_dataset(known_df)
known_loader = DataLoader(known_data, **params)
for idx, (X, y_true) in tqdm(enumerate(known_loader), total=len(known_loader)):
# print(X)
model.eval()
# print(X)
output = model(X.clone().detach())
# print(output)
a, y_pred = torch.max(output, 1)
# print(a)
# print(output)
# print(torch.max(torch.softmax(output, 1), 1)[0].tolist())
# print(a.tolist())
# print(torch.max(torch.softmax(output, 1), 1)[1].tolist())
y_prob = torch.softmax(output,1)[:, 1].tolist()
# print(y_prob)
# print(y_pred.tolist())
return y_prob, y_pred
class RGCN_VAE(torch.nn.Module):
def __init__(self, in_embd, layer_embd, out_embd, num_relations, dropout):
super(RGCN_VAE, self).__init__()
self.embedding = nn.ModuleList([nn.Embedding(35,in_embd), nn.Embedding(10,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(7,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(5,in_embd)])
self.GATConv1 = RGCNConv(6*in_embd, layer_embd, num_relations)
self.GATConv2 = RGCNConv(layer_embd, out_embd*2, num_relations)
# self.GATConv1 = GCNConv(6*in_embd, layer_embd, num_relations)
# self.GATConv2 = GCNConv(layer_embd, out_embd*2, num_relations)
self.GATConv1.reset_parameters()
self.GATConv2.reset_parameters()
self.activation = nn.Sigmoid()
self.d = out_embd
self.pool = GlobalAttention(gate_nn=nn.Sequential( \
nn.Linear(out_embd, out_embd), nn.BatchNorm1d(out_embd), nn.ReLU(), nn.Linear(out_embd, 1)))
self.graph_linear = nn.Linear(out_embd, 1)
def recognition_model(self, x, edge_index, edge_type, batch):
for i in range(6):
embds = self.embedding[i](x[:,i])
if i == 0:
x_ = embds
else:
x_ = torch.cat((x_, embds), 1)
out = self.activation(self.GATConv1(x_, edge_index, edge_type))
out = self.activation(self.GATConv2(out, edge_index, edge_type))
# out = self.activation(self.GATConv1(x_, edge_index))
# out = self.activation(self.GATConv2(out, edge_index))
mu = out[:,0:self.d]
logvar = out[:,self.d:2*self.d]
return mu, logvar
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std) + mu
def generation_model(self, Z):
out = self.activation([email protected])
return out
def forward(self, x, edge_index, edge_type, batch, type_):
if type_=='pretrain':
mu, logvar = self.recognition_model(x, edge_index, edge_type, batch)
Z = self.reparametrize(mu, logvar)
A_hat = self.generation_model(Z)
N = x.size(0)
A = torch.zeros((N,N), device=device)
with torch.no_grad():
for i in range(edge_index.size(1)):
A[edge_index[0,i], edge_index[1,i]] = 1
# print(A.size(),A_hat.size())
return A, A_hat, mu, logvar
else:
mu = self.cal_mu(x, edge_index, edge_type, batch)
out = self.pool(mu, batch)
out = self.graph_linear(out)
out = self.activation(out)
return out
def cal_mu(self, x, edge_index, edge_type, batch):
mu, _ = self.recognition_model(x, edge_index, edge_type, batch)
return mu
class GCN_VAE(torch.nn.Module):
def __init__(self, in_embd, layer_embd, out_embd, num_relations, dropout):
super(GCN_VAE, self).__init__()
self.embedding = nn.ModuleList([nn.Embedding(35,in_embd), nn.Embedding(10,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(7,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(5,in_embd)])
self.GATConv1 = GCNConv(6*in_embd, layer_embd, num_relations)
self.GATConv2 = GCNConv(layer_embd, out_embd*2, num_relations)
self.GATConv1.reset_parameters()
self.GATConv2.reset_parameters()
self.activation = nn.Sigmoid()
self.d = out_embd
self.pool = GlobalAttention(gate_nn=nn.Sequential( \
nn.Linear(out_embd, out_embd), nn.BatchNorm1d(out_embd), nn.ReLU(), nn.Linear(out_embd, 1)))
self.graph_linear = nn.Linear(out_embd, 1)
def recognition_model(self, x, edge_index, edge_type, batch):
for i in range(6):
embds = self.embedding[i](x[:,i])
if i == 0:
x_ = embds
else:
x_ = torch.cat((x_, embds), 1)
out = self.activation(self.GATConv1(x_, edge_index))
out = self.activation(self.GATConv2(out, edge_index))
mu = out[:,0:self.d]
logvar = out[:,self.d:2*self.d]
return mu, logvar
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std) + mu
def generation_model(self, Z):
out = self.activation([email protected])
return out
def forward(self, x, edge_index, edge_type, batch, type_):
if type_=='pretrain':
mu, logvar = self.recognition_model(x, edge_index, edge_type, batch)
Z = self.reparametrize(mu, logvar)
A_hat = self.generation_model(Z)
N = x.size(0)
A = torch.zeros((N,N), device=device)
with torch.no_grad():
for i in range(edge_index.size(1)):
A[edge_index[0,i], edge_index[1,i]] = 1
# print(A.size(),A_hat.size())
return A, A_hat, mu, logvar
else:
mu = self.cal_mu(x, edge_index, edge_type, batch)
out = self.pool(mu, batch)
out = self.graph_linear(out)
out = self.activation(out)
return out
def cal_mu(self, x, edge_index, edge_type, batch):
mu, _ = self.recognition_model(x, edge_index, edge_type, batch)
return mu
class GAT_VAE(torch.nn.Module):
def __init__(self, in_embd, layer_embd, out_embd, num_relations, dropout):
super(GAT_VAE, self).__init__()
self.embedding = nn.ModuleList([nn.Embedding(35,in_embd), nn.Embedding(10,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(7,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(5,in_embd)])
self.GATConv1 = GATConv(6*in_embd, layer_embd, num_relations)
self.GATConv2 = GATConv(layer_embd, out_embd*2, num_relations)
self.GATConv1.reset_parameters()
self.GATConv2.reset_parameters()
self.activation = nn.Sigmoid()
self.d = out_embd
self.pool = GlobalAttention(gate_nn=nn.Sequential( \
nn.Linear(out_embd, out_embd), nn.BatchNorm1d(out_embd), nn.ReLU(), nn.Linear(out_embd, 1)))
self.graph_linear = nn.Linear(out_embd, 1)
def recognition_model(self, x, edge_index, edge_type, batch):
for i in range(6):
embds = self.embedding[i](x[:,i])
if i == 0:
x_ = embds
else:
x_ = torch.cat((x_, embds), 1)
out = self.activation(self.GATConv1(x_, edge_index))
out = self.activation(self.GATConv2(out, edge_index))
mu = out[:,0:self.d]
logvar = out[:,self.d:2*self.d]
return mu, logvar
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std) + mu
def generation_model(self, Z):
out = self.activation([email protected])
return out
def forward(self, x, edge_index, edge_type, batch, type_):
if type_=='pretrain':
mu, logvar = self.recognition_model(x, edge_index, edge_type, batch)
Z = self.reparametrize(mu, logvar)
A_hat = self.generation_model(Z)
N = x.size(0)
A = torch.zeros((N,N), device=device)
with torch.no_grad():
for i in range(edge_index.size(1)):
A[edge_index[0,i], edge_index[1,i]] = 1
# print(A.size(),A_hat.size())
return A, A_hat, mu, logvar
else:
mu = self.cal_mu(x, edge_index, edge_type, batch)
out = self.pool(mu, batch)
out = self.graph_linear(out)
out = self.activation(out)
return out
def cal_mu(self, x, edge_index, edge_type, batch):
mu, _ = self.recognition_model(x, edge_index, edge_type, batch)
return mu
class GDataset(Dataset):
def __init__(self, nodes, edges, relations, y, idx):
super(GDataset, self).__init__()
self.nodes = nodes
self.edges = edges
self.y = y
self.relations = relations
self.idx = idx
def __getitem__(self, idx):
idx = self.idx[idx]
edge_index = torch.tensor(self.edges[idx].T, dtype=torch.long)
x = torch.tensor(self.nodes[idx], dtype=torch.long)
y = torch.tensor(self.y[idx], dtype=torch.float)
edge_type = torch.tensor(self.relations[idx], dtype=torch.float)
return Data(x=x,edge_index=edge_index,edge_type=edge_type,y=y)
def __len__(self):
return len(self.idx)
def collate_fn(self,batch):
pass
def preprocess_test(smiles):
nodes = []
edges = []
relations = []
lens = []
adjs = []
ords = []
for i in range(len(smiles)):
node, adj, order = gen_smiles2graph(smiles[i])
if node == 'error':
print(i, smiles, 'error')
continue
lens.append(adj.shape[0])
adjs.append(adj)
ords.append(order)
node[:,2] += 1
node[:,3] -= 1
nodes.append(node)
adjs = np.array(adjs)
lens = np.array(lens)
def file2array(path, delimiter=' '):
fp = open(path, 'r', encoding='utf-8')
string = fp.read()
fp.close()
row_list = string.splitlines()
data_list = [[float(i) for i in row.strip().split(',')] for row in row_list]
return np.array(data_list)
def adj2idx(adj):
idx = []
for i in range(adj.shape[0]):
for j in range(adj.shape[1]):
if adj[i,j] == 1:
idx.append([i,j])
return np.array(idx)
def order2relation(adj):
idx = []
for i in range(adj.shape[0]):
for j in range(adj.shape[1]):
if adj[i,j] != 0:
idx.extend([adj[i,j]])
return np.array(idx)
for i in range(lens.shape[0]):
adj = adjs[i]
order = ords[i]
idx = adj2idx(adj)
relation = order2relation(order)-1
edges.append(idx)
relations.append(relation)
return smiles, nodes, edges, relations
def gen_smiles2graph(sml):
"""Argument for the RD2NX function should be a valid SMILES sequence
returns: the graph
"""
ls = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 30, 33, 34, 35, 36, 37, 38, 47, 52, 53, 54, 55, 56, 83, 88]
dic = {}
for i in range(len(ls)):
dic[ls[i]] = i
m = rdkit.Chem.MolFromSmiles(sml)
# m = rdkit.Chem.AddHs(m)
order_string = {
rdkit.Chem.rdchem.BondType.SINGLE: 1,
rdkit.Chem.rdchem.BondType.DOUBLE: 2,
rdkit.Chem.rdchem.BondType.TRIPLE: 3,
rdkit.Chem.rdchem.BondType.AROMATIC: 4,
}
N = len(list(m.GetAtoms()))
nodes = np.zeros((N, 6))
try:
test = m.GetAtoms()
except:
return 'error', 'error', 'error'
for i in m.GetAtoms():
atom_types= dic[i.GetAtomicNum()]
atom_degree= i.GetDegree()
atom_form_charge= i.GetFormalCharge()
atom_hybridization= i.GetHybridization()
atom_aromatic= i.GetIsAromatic()
atom_chirality= i.GetChiralTag()
nodes[i.GetIdx()] = [atom_types, atom_degree, atom_form_charge, atom_hybridization, atom_aromatic, atom_chirality]
adj = np.zeros((N, N))
orders = np.zeros((N, N))
for j in m.GetBonds():
u = min(j.GetBeginAtomIdx(), j.GetEndAtomIdx())
v = max(j.GetBeginAtomIdx(), j.GetEndAtomIdx())
order = j.GetBondType()
if order in order_string:
order = order_string[order]
else:
raise Warning("Ignoring bond order" + order)
adj[u, v] = 1
adj[v, u] = 1
orders[u, v] = order
orders[v, u] = order
# adj += np.eye(N)
return nodes, adj, orders
def get_preds(probabilities, threshold=0.5):
return [1 if prob > threshold else 0 for prob in probabilities]
def GVAE_pred(smi, enzyme, model_path=model_path, device='cpu'):
smiles, nodes, edges, relations = preprocess_test([smi])
y = [0]*len(smiles)
test_set = GDataset(nodes, edges, relations,y, range(len(smiles)))
test_loader = DataLoader(test_set, batch_size=len(smiles), shuffle=False)
model = torch.load(model_path+'GVAE'+ '_' + enzyme + '.pt')
model.eval()
for data in test_loader:
data.to(device)
preds = model(data.x, data.edge_index, data.edge_type, data.batch, 'fintune')
# print(preds)
# print(get_preds(preds)[0])
return get_preds(preds)[0]
# if __name__ == '__main__':
# smiles = ['CC1=CN=C(N=C1NC2=CC(=CC=C2)S(=O)(=O)NC(C)(C)C)NC3=CC=C(C=C3)OCCN4CCCC4']
# smiles, nodes, edges, relations = preprocess_test(smiles)
# y = [0]*len(smiles)
# test_set = GDataset(nodes, edges, relations, y, range(len(smiles)))
# test_loader = DataLoader(test_set, batch_size=len(smiles), shuffle=False)
# model = torch.load(model_path+'GVAE_JAK1.pt')
# for data in test_loader:
# data.to(device)
# preds = model(data.x, data.edge_index, data.edge_type, data.batch, 'fintune')
# print(preds)
def smile_list_to_MACCS(smi_list):
MACCS_list = []
for smi in smi_list:
mol = Chem.MolFromSmiles(smi)
maccs = list(MACCSkeys.GenMACCSKeys(mol).ToBitString())
MACCS_list.append(maccs)
return MACCS_list
model_path = 'model/'
st.write("""
# JAK prediction app
This app predicts the compound inhibition to certain JAK(s)
""")
st.sidebar.header('User Input Parameters')
def user_input_features():
name = st.text_input('compound name', 'Fedratinib')
# if name == None:
# name = 'test'
smi = st.text_input('compound SMILES', 'CC1=CN=C(N=C1NC2=CC(=CC=C2)S(=O)(=O)NC(C)(C)C)NC3=CC=C(C=C3)OCCN4CCCC4')
# if name == None and smi == None:
# name ='Fedratinib'
# smi = 'CC1=CN=C(N=C1NC2=CC(=CC=C2)S(=O)(=O)NC(C)(C)C)NC3=CC=C(C=C3)OCCN4CCCC4'
# enzyme = st.multiselect(
# 'Choose JAK kinase: ',
# ['JAK1', 'JAK2', 'JAK3', 'TYK2'])
# if enzyme == None:
# enzyme = 'JAK1'
st.write('Select JAK kinase: ')
JAK1 = st.checkbox('JAK1')
JAK2 = st.checkbox('JAK2')
JAK3 = st.checkbox('JAK3')
TYK2 = st.checkbox('TYK2')
all_enzyme = st.checkbox('Select all enzymes')
enzyme = []
if JAK1 == True:
enzyme.append('JAK1')
if JAK2 == True:
enzyme.append('JAK2')
if JAK3 == True:
enzyme.append('JAK3')
if TYK2 == True:
enzyme.append('TYK2')
if all_enzyme == True:
enzyme = ['JAK1', 'JAK2', 'JAK3', 'TYK2']
# model = st.multiselect(
# 'Choose model: ',
# ['knn','SVM_linear', 'SVM_poly', 'SVM_rbf', 'SVM_sigmoid', 'XGBoost'])
model = []
st.write('Select model: ')
knn = st.checkbox('KNN')
SVM_linear = st.checkbox('SVM_linear')
SVM_poly = st.checkbox('SVM_poly')
SVM_rbf = st.checkbox('SVM_rbf')
SVM_sigmoid = st.checkbox('SVM_sigmoid')
RF = st.checkbox('RF')
XGBoost = st.checkbox('XGBoost')
CNN = st.checkbox('CNN')
GVAE = st.checkbox('GraphVAE')
chembert = st.checkbox('chemBERTa')
all_model = st.checkbox('Select all models')
if knn == True:
model.append('knn')
if SVM_linear == True:
model.append('SVM_linear')
if SVM_poly == True:
model.append('SVM_poly')
if SVM_rbf == True:
model.append('SVM_rbf')
if SVM_sigmoid == True:
model.append('SVM_sigmoid')
if RF == True:
model.append('RF')
if XGBoost == True:
model.append('XGBoost')
if CNN == True:
model.append('CNN')
if GVAE == True:
model.append('GVAE')
if chembert == True:
model.append('chembert')
if all_model == True:
model = ['knn', 'SVM_linear', 'SVM_poly', 'SVM_rbf', 'SVM_sigmoid', 'RF', 'XGBoost', 'CNN', 'GVAE', 'chembert']
return name, smi, enzyme, model
with st.sidebar:
name, smi, enzyme, model_chosen = user_input_features()
st.subheader('User Input parameters:')
st.write('Current compound: ', name)
st.write('Current compound SMILE: ', smi)
st.write('Selected kinase:', enzyme)
st.write('Selected model: ', model_chosen)
if st.button('Start Prediction'):
if model_chosen==[]:
st.write('Did not choose model!')
if enzyme==[]:
st.write('Did not choose JAK kinase!')
if smi=='':
st.write('NO SMILES input!')
elif smi != '' and model_chosen !=[] and enzyme != []:
try: # TEST WHETHER SMILES STRING IS VALID
MACCS_list = smile_list_to_MACCS([smi])
header = ['bit' + str(i) for i in range(167)]
df = pd.DataFrame(MACCS_list,columns=header)
maccs = df.values
valid_smi = True
except:
st.write('Invalid compound SMILES! ')
valid_smi = False
try:
if valid_smi == True:
row_num = len(enzyme)
col_num = len(model_chosen)
prediction = []
df = pd.DataFrame()
for jak in enzyme:
for ml in model_chosen:
modelname = ml + '_' + jak + '.sav'
try:
if ml != 'GVAE' and ml != 'CNN':
model = pickle.load(open(model_path+modelname, 'rb'))
pred = model.predict(maccs)
elif ml == 'GVAE':
pred = GVAE_pred(smi, jak)
elif ml == 'CNN':
prob, pred = CNN_predict(jak, smi)
label =['noninhibitor', 'inhibitor']
# st.write(jak, ' ', ml, ' prediction is ', label[int(pred)])
prediction.append(label[int(pred)])
# st.write(jak, ' ', ml)
except:
if ml != 'GVAE' and ml != 'CNN':
st.write(modelname, ' cannot be loaded')
elif ml == 'GVAE' or ml == 'CNN':
st.write('CANNOT LOAD ', ml, ' for ', jak)
prediction.append('NA')
# try:
# pred_prob = model.predict_proba(maccs)
# # st.write(jak, ' ', ml, ' prediction is ', pred_prob)
# except:
# pass
# st.write('cannot predict_proba')
vec = np.array(prediction)
df = pd.DataFrame(vec.reshape(-1, col_num))
df.columns = model_chosen
df.index = enzyme
if name == '':
name = 'test compound'
title = 'Evaluation report for ' + name
st.subheader(title)
# st.write('Compound name: ', name)
# st.write('Compound SMILES: ', smi)
# df.loc[len(df)] = prediction
st.write(df)
except:
st.write('CANNOT FINISH PREDICTION')
|