Spaces:
Running
Running
Commit
·
7bf72c3
1
Parent(s):
e6956bc
Refactor image processing functions and add effects
Browse files- Cleaned up code formatting
- Added black and white effect
- Implemented sepia tone effect
- Introduced negative image effect
- Added watercolor and posterization effects
- filters.py +173 -57
filters.py
CHANGED
@@ -167,15 +167,15 @@ def warm_filter(image, intensity: int = 30):
|
|
167 |
"""
|
168 |
# Convert intensity to actual adjustment values
|
169 |
intensity_scale = intensity / 100.0
|
170 |
-
|
171 |
# Split the image into BGR channels
|
172 |
b, g, r = cv2.split(image.astype(np.float32))
|
173 |
-
|
174 |
# Increase red, slightly increase green, decrease blue
|
175 |
r = np.clip(r * (1 + 0.5 * intensity_scale), 0, 255)
|
176 |
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
177 |
b = np.clip(b * (1 - 0.1 * intensity_scale), 0, 255)
|
178 |
-
|
179 |
return cv2.merge([b, g, r]).astype(np.uint8)
|
180 |
|
181 |
|
@@ -201,15 +201,15 @@ def cool_filter(image, intensity: int = 30):
|
|
201 |
"""
|
202 |
# Convert intensity to actual adjustment values
|
203 |
intensity_scale = intensity / 100.0
|
204 |
-
|
205 |
# Split the image into BGR channels
|
206 |
b, g, r = cv2.split(image.astype(np.float32))
|
207 |
-
|
208 |
# Increase blue, slightly increase green, decrease red
|
209 |
b = np.clip(b * (1 + 0.5 * intensity_scale), 0, 255)
|
210 |
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
211 |
r = np.clip(r * (1 - 0.1 * intensity_scale), 0, 255)
|
212 |
-
|
213 |
return cv2.merge([b, g, r]).astype(np.uint8)
|
214 |
|
215 |
|
@@ -235,13 +235,13 @@ def adjust_saturation(image, factor: int = 50):
|
|
235 |
"""
|
236 |
# Convert factor to multiplication value (0.0 to 2.0)
|
237 |
factor = (factor / 50.0)
|
238 |
-
|
239 |
# Convert to HSV
|
240 |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
|
241 |
-
|
242 |
# Adjust saturation
|
243 |
hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255)
|
244 |
-
|
245 |
# Convert back to BGR
|
246 |
return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2BGR)
|
247 |
|
@@ -267,23 +267,23 @@ def vintage_filter(image, intensity: int = 50):
|
|
267 |
* `numpy.ndarray`: Image with vintage effect
|
268 |
"""
|
269 |
intensity_scale = intensity / 100.0
|
270 |
-
|
271 |
# Split channels
|
272 |
b, g, r = cv2.split(image.astype(np.float32))
|
273 |
-
|
274 |
# Adjust colors for vintage look
|
275 |
r = np.clip(r * (1 + 0.3 * intensity_scale), 0, 255)
|
276 |
g = np.clip(g * (1 - 0.1 * intensity_scale), 0, 255)
|
277 |
b = np.clip(b * (1 - 0.2 * intensity_scale), 0, 255)
|
278 |
-
|
279 |
# Create sepia-like effect
|
280 |
result = cv2.merge([b, g, r]).astype(np.uint8)
|
281 |
-
|
282 |
# Add slight blur for softness
|
283 |
if intensity > 0:
|
284 |
blur_amount = int(3 * intensity_scale) * 2 + 1
|
285 |
result = cv2.GaussianBlur(result, (blur_amount, blur_amount), 0)
|
286 |
-
|
287 |
return result
|
288 |
|
289 |
|
@@ -308,21 +308,21 @@ def vignette_effect(image, intensity: int = 50):
|
|
308 |
* `numpy.ndarray`: Image with vignette effect
|
309 |
"""
|
310 |
height, width = image.shape[:2]
|
311 |
-
|
312 |
# Create a vignette mask
|
313 |
X_resultant = np.abs(np.linspace(-1, 1, width)[None, :])
|
314 |
Y_resultant = np.abs(np.linspace(-1, 1, height)[:, None])
|
315 |
mask = np.sqrt(X_resultant**2 + Y_resultant**2)
|
316 |
mask = 1 - np.clip(mask, 0, 1)
|
317 |
-
|
318 |
# Adjust mask based on intensity
|
319 |
mask = (mask - mask.min()) / (mask.max() - mask.min())
|
320 |
mask = mask ** (1 + intensity/50)
|
321 |
-
|
322 |
# Apply mask to image
|
323 |
mask = mask[:, :, None]
|
324 |
result = image.astype(np.float32) * mask
|
325 |
-
|
326 |
return np.clip(result, 0, 255).astype(np.uint8)
|
327 |
|
328 |
|
@@ -347,27 +347,30 @@ def hdr_effect(image, strength: int = 50):
|
|
347 |
* `numpy.ndarray`: Image with HDR-like effect
|
348 |
"""
|
349 |
strength_scale = strength / 100.0
|
350 |
-
|
351 |
# Convert to LAB color space
|
352 |
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB).astype(np.float32)
|
353 |
-
|
354 |
# Split channels
|
355 |
l, a, b = cv2.split(lab)
|
356 |
-
|
357 |
# Apply CLAHE to L channel
|
358 |
-
clahe = cv2.createCLAHE(
|
|
|
359 |
l = clahe.apply(l.astype(np.uint8)).astype(np.float32)
|
360 |
-
|
361 |
# Enhance local contrast
|
362 |
if strength > 0:
|
363 |
blur = cv2.GaussianBlur(l, (0, 0), 3)
|
364 |
-
detail = cv2.addWeighted(
|
365 |
-
|
366 |
-
|
|
|
|
|
367 |
# Merge channels and convert back
|
368 |
enhanced_lab = cv2.merge([l, a, b])
|
369 |
result = cv2.cvtColor(enhanced_lab.astype(np.uint8), cv2.COLOR_LAB2BGR)
|
370 |
-
|
371 |
return result
|
372 |
|
373 |
|
@@ -394,7 +397,7 @@ def gaussian_blur(image, kernel_size: int = 5):
|
|
394 |
# Ensure kernel size is odd
|
395 |
if kernel_size % 2 == 0:
|
396 |
kernel_size += 1
|
397 |
-
|
398 |
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
|
399 |
|
400 |
|
@@ -419,15 +422,15 @@ def sharpen(image, amount: int = 50):
|
|
419 |
* `numpy.ndarray`: Sharpened image
|
420 |
"""
|
421 |
amount = amount / 100.0
|
422 |
-
|
423 |
# Create the sharpening kernel
|
424 |
-
kernel = np.array([[-1
|
425 |
-
[-1, 9
|
426 |
-
[-1
|
427 |
-
|
428 |
# Apply the kernel
|
429 |
sharpened = cv2.filter2D(image, -1, kernel)
|
430 |
-
|
431 |
# Blend with original image based on amount
|
432 |
return cv2.addWeighted(image, 1 - amount, sharpened, amount, 0)
|
433 |
|
@@ -458,43 +461,43 @@ def emboss(image, strength: int = 50, direction: int = 0):
|
|
458 |
* `numpy.ndarray`: Embossed image
|
459 |
"""
|
460 |
strength = strength / 100.0 * 2.0 # Scale to 0-2 range
|
461 |
-
|
462 |
# Define kernels for different directions
|
463 |
kernels = [
|
464 |
-
np.array([[-1
|
465 |
[-1, 1, 1],
|
466 |
-
[
|
467 |
np.array([[-1, 0, 1],
|
468 |
[-1, 1, 1],
|
469 |
[-1, 0, 1]]), # 1 - left to right
|
470 |
-
np.array([[
|
471 |
[-1, 1, 1],
|
472 |
-
[-1
|
473 |
-
np.array([[
|
474 |
-
[
|
475 |
-
[-1
|
476 |
-
np.array([[
|
477 |
-
[ 1, 1
|
478 |
-
[
|
479 |
-
np.array([[
|
480 |
-
[ 1, 1
|
481 |
-
[
|
482 |
-
np.array([[
|
483 |
-
[ 1, 1
|
484 |
-
[
|
485 |
-
np.array([[-1
|
486 |
-
[
|
487 |
-
[
|
488 |
]
|
489 |
-
|
490 |
# Apply the kernel
|
491 |
kernel = kernels[direction % 8]
|
492 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
493 |
embossed = cv2.filter2D(gray, -1, kernel * strength)
|
494 |
-
|
495 |
# Normalize to ensure good contrast
|
496 |
embossed = cv2.normalize(embossed, None, 0, 255, cv2.NORM_MINMAX)
|
497 |
-
|
498 |
# Convert back to BGR
|
499 |
return cv2.cvtColor(embossed.astype(np.uint8), cv2.COLOR_GRAY2BGR)
|
500 |
|
@@ -526,3 +529,116 @@ def oil_painting(image, size: int = 5, dynRatio: int = 1):
|
|
526 |
"""
|
527 |
return cv2.xphoto.oilPainting(image, size, dynRatio)
|
528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
"""
|
168 |
# Convert intensity to actual adjustment values
|
169 |
intensity_scale = intensity / 100.0
|
170 |
+
|
171 |
# Split the image into BGR channels
|
172 |
b, g, r = cv2.split(image.astype(np.float32))
|
173 |
+
|
174 |
# Increase red, slightly increase green, decrease blue
|
175 |
r = np.clip(r * (1 + 0.5 * intensity_scale), 0, 255)
|
176 |
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
177 |
b = np.clip(b * (1 - 0.1 * intensity_scale), 0, 255)
|
178 |
+
|
179 |
return cv2.merge([b, g, r]).astype(np.uint8)
|
180 |
|
181 |
|
|
|
201 |
"""
|
202 |
# Convert intensity to actual adjustment values
|
203 |
intensity_scale = intensity / 100.0
|
204 |
+
|
205 |
# Split the image into BGR channels
|
206 |
b, g, r = cv2.split(image.astype(np.float32))
|
207 |
+
|
208 |
# Increase blue, slightly increase green, decrease red
|
209 |
b = np.clip(b * (1 + 0.5 * intensity_scale), 0, 255)
|
210 |
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
211 |
r = np.clip(r * (1 - 0.1 * intensity_scale), 0, 255)
|
212 |
+
|
213 |
return cv2.merge([b, g, r]).astype(np.uint8)
|
214 |
|
215 |
|
|
|
235 |
"""
|
236 |
# Convert factor to multiplication value (0.0 to 2.0)
|
237 |
factor = (factor / 50.0)
|
238 |
+
|
239 |
# Convert to HSV
|
240 |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
|
241 |
+
|
242 |
# Adjust saturation
|
243 |
hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255)
|
244 |
+
|
245 |
# Convert back to BGR
|
246 |
return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2BGR)
|
247 |
|
|
|
267 |
* `numpy.ndarray`: Image with vintage effect
|
268 |
"""
|
269 |
intensity_scale = intensity / 100.0
|
270 |
+
|
271 |
# Split channels
|
272 |
b, g, r = cv2.split(image.astype(np.float32))
|
273 |
+
|
274 |
# Adjust colors for vintage look
|
275 |
r = np.clip(r * (1 + 0.3 * intensity_scale), 0, 255)
|
276 |
g = np.clip(g * (1 - 0.1 * intensity_scale), 0, 255)
|
277 |
b = np.clip(b * (1 - 0.2 * intensity_scale), 0, 255)
|
278 |
+
|
279 |
# Create sepia-like effect
|
280 |
result = cv2.merge([b, g, r]).astype(np.uint8)
|
281 |
+
|
282 |
# Add slight blur for softness
|
283 |
if intensity > 0:
|
284 |
blur_amount = int(3 * intensity_scale) * 2 + 1
|
285 |
result = cv2.GaussianBlur(result, (blur_amount, blur_amount), 0)
|
286 |
+
|
287 |
return result
|
288 |
|
289 |
|
|
|
308 |
* `numpy.ndarray`: Image with vignette effect
|
309 |
"""
|
310 |
height, width = image.shape[:2]
|
311 |
+
|
312 |
# Create a vignette mask
|
313 |
X_resultant = np.abs(np.linspace(-1, 1, width)[None, :])
|
314 |
Y_resultant = np.abs(np.linspace(-1, 1, height)[:, None])
|
315 |
mask = np.sqrt(X_resultant**2 + Y_resultant**2)
|
316 |
mask = 1 - np.clip(mask, 0, 1)
|
317 |
+
|
318 |
# Adjust mask based on intensity
|
319 |
mask = (mask - mask.min()) / (mask.max() - mask.min())
|
320 |
mask = mask ** (1 + intensity/50)
|
321 |
+
|
322 |
# Apply mask to image
|
323 |
mask = mask[:, :, None]
|
324 |
result = image.astype(np.float32) * mask
|
325 |
+
|
326 |
return np.clip(result, 0, 255).astype(np.uint8)
|
327 |
|
328 |
|
|
|
347 |
* `numpy.ndarray`: Image with HDR-like effect
|
348 |
"""
|
349 |
strength_scale = strength / 100.0
|
350 |
+
|
351 |
# Convert to LAB color space
|
352 |
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB).astype(np.float32)
|
353 |
+
|
354 |
# Split channels
|
355 |
l, a, b = cv2.split(lab)
|
356 |
+
|
357 |
# Apply CLAHE to L channel
|
358 |
+
clahe = cv2.createCLAHE(
|
359 |
+
clipLimit=3.0 * strength_scale, tileGridSize=(8, 8))
|
360 |
l = clahe.apply(l.astype(np.uint8)).astype(np.float32)
|
361 |
+
|
362 |
# Enhance local contrast
|
363 |
if strength > 0:
|
364 |
blur = cv2.GaussianBlur(l, (0, 0), 3)
|
365 |
+
detail = cv2.addWeighted(
|
366 |
+
l, 1 + strength_scale, blur, -strength_scale, 0)
|
367 |
+
l = cv2.addWeighted(l, 1 - strength_scale/2,
|
368 |
+
detail, strength_scale/2, 0)
|
369 |
+
|
370 |
# Merge channels and convert back
|
371 |
enhanced_lab = cv2.merge([l, a, b])
|
372 |
result = cv2.cvtColor(enhanced_lab.astype(np.uint8), cv2.COLOR_LAB2BGR)
|
373 |
+
|
374 |
return result
|
375 |
|
376 |
|
|
|
397 |
# Ensure kernel size is odd
|
398 |
if kernel_size % 2 == 0:
|
399 |
kernel_size += 1
|
400 |
+
|
401 |
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
|
402 |
|
403 |
|
|
|
422 |
* `numpy.ndarray`: Sharpened image
|
423 |
"""
|
424 |
amount = amount / 100.0
|
425 |
+
|
426 |
# Create the sharpening kernel
|
427 |
+
kernel = np.array([[-1, -1, -1],
|
428 |
+
[-1, 9, -1],
|
429 |
+
[-1, -1, -1]])
|
430 |
+
|
431 |
# Apply the kernel
|
432 |
sharpened = cv2.filter2D(image, -1, kernel)
|
433 |
+
|
434 |
# Blend with original image based on amount
|
435 |
return cv2.addWeighted(image, 1 - amount, sharpened, amount, 0)
|
436 |
|
|
|
461 |
* `numpy.ndarray`: Embossed image
|
462 |
"""
|
463 |
strength = strength / 100.0 * 2.0 # Scale to 0-2 range
|
464 |
+
|
465 |
# Define kernels for different directions
|
466 |
kernels = [
|
467 |
+
np.array([[-1, -1, 0],
|
468 |
[-1, 1, 1],
|
469 |
+
[0, 1, 1]]), # 0 - top left to bottom right
|
470 |
np.array([[-1, 0, 1],
|
471 |
[-1, 1, 1],
|
472 |
[-1, 0, 1]]), # 1 - left to right
|
473 |
+
np.array([[0, 1, 1],
|
474 |
[-1, 1, 1],
|
475 |
+
[-1, -1, 0]]), # 2 - bottom left to top right
|
476 |
+
np.array([[1, 1, 1],
|
477 |
+
[0, 1, 0],
|
478 |
+
[-1, -1, -1]]), # 3 - bottom to top
|
479 |
+
np.array([[1, 1, 0],
|
480 |
+
[1, 1, -1],
|
481 |
+
[0, -1, -1]]), # 4 - bottom right to top left
|
482 |
+
np.array([[1, 0, -1],
|
483 |
+
[1, 1, -1],
|
484 |
+
[1, 0, -1]]), # 5 - right to left
|
485 |
+
np.array([[0, -1, -1],
|
486 |
+
[1, 1, -1],
|
487 |
+
[1, 1, 0]]), # 6 - top right to bottom left
|
488 |
+
np.array([[-1, -1, -1],
|
489 |
+
[0, 1, 0],
|
490 |
+
[1, 1, 1]]) # 7 - top to bottom
|
491 |
]
|
492 |
+
|
493 |
# Apply the kernel
|
494 |
kernel = kernels[direction % 8]
|
495 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
496 |
embossed = cv2.filter2D(gray, -1, kernel * strength)
|
497 |
+
|
498 |
# Normalize to ensure good contrast
|
499 |
embossed = cv2.normalize(embossed, None, 0, 255, cv2.NORM_MINMAX)
|
500 |
+
|
501 |
# Convert back to BGR
|
502 |
return cv2.cvtColor(embossed.astype(np.uint8), cv2.COLOR_GRAY2BGR)
|
503 |
|
|
|
529 |
"""
|
530 |
return cv2.xphoto.oilPainting(image, size, dynRatio)
|
531 |
|
532 |
+
|
533 |
+
@registry.register("Black and White")
|
534 |
+
def black_and_white(image):
|
535 |
+
"""
|
536 |
+
## Convert image to classic black and white.
|
537 |
+
|
538 |
+
**Args:**
|
539 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
540 |
+
|
541 |
+
**Returns:**
|
542 |
+
* `numpy.ndarray`: Grayscale image
|
543 |
+
"""
|
544 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
545 |
+
|
546 |
+
|
547 |
+
@registry.register("Sepia")
|
548 |
+
def sepia(image):
|
549 |
+
"""
|
550 |
+
## Apply a warm sepia tone effect.
|
551 |
+
|
552 |
+
**Args:**
|
553 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
554 |
+
|
555 |
+
**Returns:**
|
556 |
+
* `numpy.ndarray`: Sepia toned image
|
557 |
+
"""
|
558 |
+
# Convert to RGB
|
559 |
+
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
560 |
+
|
561 |
+
# Apply sepia matrix
|
562 |
+
sepia_matrix = np.array([
|
563 |
+
[0.393, 0.769, 0.189],
|
564 |
+
[0.349, 0.686, 0.168],
|
565 |
+
[0.272, 0.534, 0.131]
|
566 |
+
])
|
567 |
+
|
568 |
+
sepia_image = np.dot(rgb, sepia_matrix.T)
|
569 |
+
sepia_image = np.clip(sepia_image, 0, 255)
|
570 |
+
|
571 |
+
return cv2.cvtColor(sepia_image.astype(np.uint8), cv2.COLOR_RGB2BGR)
|
572 |
+
|
573 |
+
|
574 |
+
@registry.register("Negative")
|
575 |
+
def negative(image):
|
576 |
+
"""
|
577 |
+
## Invert colors to create a negative effect.
|
578 |
+
|
579 |
+
**Args:**
|
580 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
581 |
+
|
582 |
+
**Returns:**
|
583 |
+
* `numpy.ndarray`: Negative image
|
584 |
+
"""
|
585 |
+
return cv2.bitwise_not(image)
|
586 |
+
|
587 |
+
|
588 |
+
@registry.register("Watercolor")
|
589 |
+
def watercolor(image):
|
590 |
+
"""
|
591 |
+
## Apply a watercolor painting effect.
|
592 |
+
|
593 |
+
**Args:**
|
594 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
595 |
+
|
596 |
+
**Returns:**
|
597 |
+
* `numpy.ndarray`: Watercolor effect image
|
598 |
+
"""
|
599 |
+
# Apply bilateral filter to create watercolor effect
|
600 |
+
return cv2.xphoto.oilPainting(image, 7, 1)
|
601 |
+
|
602 |
+
|
603 |
+
@registry.register("Posterization")
|
604 |
+
def posterize(image):
|
605 |
+
"""
|
606 |
+
## Reduce colors to create a posterization effect.
|
607 |
+
|
608 |
+
**Args:**
|
609 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
610 |
+
|
611 |
+
**Returns:**
|
612 |
+
* `numpy.ndarray`: Posterized image
|
613 |
+
"""
|
614 |
+
# Convert to HSV
|
615 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
616 |
+
|
617 |
+
# Reduce color levels
|
618 |
+
hsv[:, :, 1] = cv2.equalizeHist(hsv[:, :, 1])
|
619 |
+
hsv[:, :, 2] = cv2.equalizeHist(hsv[:, :, 2])
|
620 |
+
|
621 |
+
# Convert back to BGR
|
622 |
+
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
623 |
+
|
624 |
+
|
625 |
+
@registry.register("Cross Process")
|
626 |
+
def cross_process(image):
|
627 |
+
"""
|
628 |
+
## Apply a film cross-processing effect.
|
629 |
+
|
630 |
+
**Args:**
|
631 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
632 |
+
|
633 |
+
**Returns:**
|
634 |
+
* `numpy.ndarray`: Cross-processed image
|
635 |
+
"""
|
636 |
+
# Split channels
|
637 |
+
b, g, r = cv2.split(image.astype(np.float32))
|
638 |
+
|
639 |
+
# Apply cross-process transformation
|
640 |
+
b = np.clip(b * 1.2, 0, 255)
|
641 |
+
g = np.clip(g * 0.8, 0, 255)
|
642 |
+
r = np.clip(r * 1.4, 0, 255)
|
643 |
+
|
644 |
+
return cv2.merge([b, g, r]).astype(np.uint8)
|