File size: 14,334 Bytes
4cc2869
 
 
 
3d5d69a
4cc2869
 
 
 
3d5d69a
7a74dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd32459
856f31e
 
8e75d7b
 
 
 
 
856f31e
8e75d7b
 
fd32459
7a74dd9
 
 
 
 
4cc2869
7a74dd9
 
 
 
 
 
 
 
 
4cc2869
7a74dd9
 
4cc2869
7a74dd9
 
4cc2869
7a74dd9
 
 
 
 
 
38b98e3
41bdd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5d69a
41bdd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5d69a
 
41bdd67
 
3d5d69a
 
41bdd67
ad0c787
 
3d5d69a
be24af1
 
ad0c787
3d5d69a
ad0c787
 
 
 
 
3d5d69a
ad0c787
3d5d69a
 
 
 
 
 
 
 
 
 
be24af1
ad0c787
3d5d69a
 
ad0c787
3d5d69a
76524db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85418d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6956bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import cv2
import numpy as np
from registry import registry


@registry.register("Original")
def original(image):
    return image


@registry.register("Dot Effect", defaults={
    "dot_size": 10,
    "dot_spacing": 2,
    "invert": False,
}, min_vals={
    "dot_size": 1,
    "dot_spacing": 1,
}, max_vals={
    "dot_size": 20,
    "dot_spacing": 10,
}, step_vals={
    "dot_size": 1,
    "dot_spacing": 1,
})
def dot_effect(image, dot_size: int = 10, dot_spacing: int = 2, invert: bool = False):
    """
    ## Convert your image into a dotted pattern.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR or grayscale)
    * `dot_size` (int): Size of each dot
    * `dot_spacing` (int): Spacing between dots
    * `invert` (bool): Invert the dots

    **Returns:**
    * `numpy.ndarray`: Dotted image
    """
    # Convert to grayscale if image is color
    if len(image.shape) == 3:
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        gray = image

    # Apply adaptive thresholding to improve contrast
    gray = cv2.adaptiveThreshold(
        gray,
        255,
        cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
        cv2.THRESH_BINARY,
        25,  # Block size
        5    # Constant subtracted from mean
    )

    height, width = gray.shape
    canvas = np.zeros_like(gray) if not invert else np.full_like(gray, 255)

    y_dots = range(0, height, dot_size + dot_spacing)
    x_dots = range(0, width, dot_size + dot_spacing)

    dot_color = 255 if not invert else 0
    for y in y_dots:
        for x in x_dots:
            region = gray[y:min(y+dot_size, height), x:min(x+dot_size, width)]
            if region.size > 0:
                brightness = np.mean(region)

            # Dynamic dot sizing based on brightness
            relative_brightness = brightness / 255.0
            if invert:
                relative_brightness = 1 - relative_brightness

            # Draw circle with size proportional to brightness
            radius = int((dot_size/2) * relative_brightness)
            if radius > 0:
                cv2.circle(canvas,
                           (x + dot_size//2, y + dot_size//2),
                           radius,
                           (dot_color),
                           -1)

    return canvas


@registry.register("Pixelize", defaults={
    "pixel_size": 10,
}, min_vals={
    "pixel_size": 1,
}, max_vals={
    "pixel_size": 50,
}, step_vals={
    "pixel_size": 1,
})
def pixelize(image, pixel_size: int = 10):
    """
    ## Apply a pixelization effect to the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR or grayscale)
    * `pixel_size` (int): Size of each pixel block

    **Returns:**
    * `numpy.ndarray`: Pixelized image
    """
    height, width = image.shape[:2]

    # Resize the image to a smaller size
    small_height = height // pixel_size
    small_width = width // pixel_size
    small_image = cv2.resize(
        image, (small_width, small_height), interpolation=cv2.INTER_LINEAR)

    # Resize back to the original size with nearest neighbor interpolation
    pixelized_image = cv2.resize(
        small_image, (width, height), interpolation=cv2.INTER_NEAREST)

    return pixelized_image


@registry.register("Sketch Effect")
def sketch_effect(image):
    """
    ## Apply a sketch effect to the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR or grayscale)

    **Returns:**
    * `numpy.ndarray`: Sketch effect applied image
    """
    # Convert the image to grayscale
    if len(image.shape) == 3:
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        gray = image

    # Invert the grayscale image
    inverted_gray = cv2.bitwise_not(gray)

    # Apply Gaussian blur to the inverted image
    blurred = cv2.GaussianBlur(inverted_gray, (21, 21), 0)  # Fixed kernel size

    # Blend the grayscale image with the blurred inverted image
    sketch = cv2.divide(gray, 255 - blurred, scale=256)

    return sketch


@registry.register("Warm", defaults={
    "intensity": 30,
}, min_vals={
    "intensity": 0,
}, max_vals={
    "intensity": 100,
}, step_vals={
    "intensity": 1,
})
def warm_filter(image, intensity: int = 30):
    """
    ## Adds a warm color effect to the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `intensity` (int): Intensity of the warm effect (0-100)

    **Returns:**
    * `numpy.ndarray`: Image with warm color effect
    """
    # Convert intensity to actual adjustment values
    intensity_scale = intensity / 100.0
    
    # Split the image into BGR channels
    b, g, r = cv2.split(image.astype(np.float32))
    
    # Increase red, slightly increase green, decrease blue
    r = np.clip(r * (1 + 0.5 * intensity_scale), 0, 255)
    g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
    b = np.clip(b * (1 - 0.1 * intensity_scale), 0, 255)
    
    return cv2.merge([b, g, r]).astype(np.uint8)


@registry.register("Cool", defaults={
    "intensity": 30,
}, min_vals={
    "intensity": 0,
}, max_vals={
    "intensity": 100,
}, step_vals={
    "intensity": 1,
})
def cool_filter(image, intensity: int = 30):
    """
    ## Adds a cool color effect to the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `intensity` (int): Intensity of the cool effect (0-100)

    **Returns:**
    * `numpy.ndarray`: Image with cool color effect
    """
    # Convert intensity to actual adjustment values
    intensity_scale = intensity / 100.0
    
    # Split the image into BGR channels
    b, g, r = cv2.split(image.astype(np.float32))
    
    # Increase blue, slightly increase green, decrease red
    b = np.clip(b * (1 + 0.5 * intensity_scale), 0, 255)
    g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
    r = np.clip(r * (1 - 0.1 * intensity_scale), 0, 255)
    
    return cv2.merge([b, g, r]).astype(np.uint8)


@registry.register("Saturation", defaults={
    "factor": 50,
}, min_vals={
    "factor": 0,
}, max_vals={
    "factor": 100,
}, step_vals={
    "factor": 1,
})
def adjust_saturation(image, factor: int = 50):
    """
    ## Adjusts the saturation of the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `factor` (int): Saturation factor (0-100, 50 is normal)

    **Returns:**
    * `numpy.ndarray`: Image with adjusted saturation
    """
    # Convert factor to multiplication value (0.0 to 2.0)
    factor = (factor / 50.0)
    
    # Convert to HSV
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
    
    # Adjust saturation
    hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255)
    
    # Convert back to BGR
    return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2BGR)


@registry.register("Vintage", defaults={
    "intensity": 50,
}, min_vals={
    "intensity": 0,
}, max_vals={
    "intensity": 100,
}, step_vals={
    "intensity": 1,
})
def vintage_filter(image, intensity: int = 50):
    """
    ## Adds a vintage/retro effect to the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `intensity` (int): Intensity of the vintage effect (0-100)

    **Returns:**
    * `numpy.ndarray`: Image with vintage effect
    """
    intensity_scale = intensity / 100.0
    
    # Split channels
    b, g, r = cv2.split(image.astype(np.float32))
    
    # Adjust colors for vintage look
    r = np.clip(r * (1 + 0.3 * intensity_scale), 0, 255)
    g = np.clip(g * (1 - 0.1 * intensity_scale), 0, 255)
    b = np.clip(b * (1 - 0.2 * intensity_scale), 0, 255)
    
    # Create sepia-like effect
    result = cv2.merge([b, g, r]).astype(np.uint8)
    
    # Add slight blur for softness
    if intensity > 0:
        blur_amount = int(3 * intensity_scale) * 2 + 1
        result = cv2.GaussianBlur(result, (blur_amount, blur_amount), 0)
    
    return result


@registry.register("Vignette", defaults={
    "intensity": 50,
}, min_vals={
    "intensity": 0,
}, max_vals={
    "intensity": 100,
}, step_vals={
    "intensity": 1,
})
def vignette_effect(image, intensity: int = 50):
    """
    ## Adds a vignette effect (darker corners) to the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `intensity` (int): Intensity of the vignette (0-100)

    **Returns:**
    * `numpy.ndarray`: Image with vignette effect
    """
    height, width = image.shape[:2]
    
    # Create a vignette mask
    X_resultant = np.abs(np.linspace(-1, 1, width)[None, :])
    Y_resultant = np.abs(np.linspace(-1, 1, height)[:, None])
    mask = np.sqrt(X_resultant**2 + Y_resultant**2)
    mask = 1 - np.clip(mask, 0, 1)
    
    # Adjust mask based on intensity
    mask = (mask - mask.min()) / (mask.max() - mask.min())
    mask = mask ** (1 + intensity/50)
    
    # Apply mask to image
    mask = mask[:, :, None]
    result = image.astype(np.float32) * mask
    
    return np.clip(result, 0, 255).astype(np.uint8)


@registry.register("HDR Effect", defaults={
    "strength": 50,
}, min_vals={
    "strength": 0,
}, max_vals={
    "strength": 100,
}, step_vals={
    "strength": 1,
})
def hdr_effect(image, strength: int = 50):
    """
    ## Applies an HDR-like effect to enhance image details.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `strength` (int): Strength of the HDR effect (0-100)

    **Returns:**
    * `numpy.ndarray`: Image with HDR-like effect
    """
    strength_scale = strength / 100.0
    
    # Convert to LAB color space
    lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB).astype(np.float32)
    
    # Split channels
    l, a, b = cv2.split(lab)
    
    # Apply CLAHE to L channel
    clahe = cv2.createCLAHE(clipLimit=3.0 * strength_scale, tileGridSize=(8, 8))
    l = clahe.apply(l.astype(np.uint8)).astype(np.float32)
    
    # Enhance local contrast
    if strength > 0:
        blur = cv2.GaussianBlur(l, (0, 0), 3)
        detail = cv2.addWeighted(l, 1 + strength_scale, blur, -strength_scale, 0)
        l = cv2.addWeighted(l, 1 - strength_scale/2, detail, strength_scale/2, 0)
    
    # Merge channels and convert back
    enhanced_lab = cv2.merge([l, a, b])
    result = cv2.cvtColor(enhanced_lab.astype(np.uint8), cv2.COLOR_LAB2BGR)
    
    return result


@registry.register("Gaussian Blur", defaults={
    "kernel_size": 5,
}, min_vals={
    "kernel_size": 1,
}, max_vals={
    "kernel_size": 31,
}, step_vals={
    "kernel_size": 2,
})
def gaussian_blur(image, kernel_size: int = 5):
    """
    ## Apply Gaussian blur effect to the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `kernel_size` (int): Size of the Gaussian kernel (must be odd)

    **Returns:**
    * `numpy.ndarray`: Blurred image
    """
    # Ensure kernel size is odd
    if kernel_size % 2 == 0:
        kernel_size += 1
    
    return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)


@registry.register("Sharpen", defaults={
    "amount": 50,
}, min_vals={
    "amount": 0,
}, max_vals={
    "amount": 100,
}, step_vals={
    "amount": 1,
})
def sharpen(image, amount: int = 50):
    """
    ## Sharpen the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `amount` (int): Sharpening intensity (0-100)

    **Returns:**
    * `numpy.ndarray`: Sharpened image
    """
    amount = amount / 100.0
    
    # Create the sharpening kernel
    kernel = np.array([[-1,-1,-1],
                      [-1, 9,-1],
                      [-1,-1,-1]])
    
    # Apply the kernel
    sharpened = cv2.filter2D(image, -1, kernel)
    
    # Blend with original image based on amount
    return cv2.addWeighted(image, 1 - amount, sharpened, amount, 0)


@registry.register("Emboss", defaults={
    "strength": 50,
    "direction": 0,
}, min_vals={
    "strength": 0,
    "direction": 0,
}, max_vals={
    "strength": 100,
    "direction": 7,
}, step_vals={
    "strength": 1,
    "direction": 1,
})
def emboss(image, strength: int = 50, direction: int = 0):
    """
    ## Apply emboss effect to create a 3D look.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `strength` (int): Emboss strength (0-100)
    * `direction` (int): Direction of emboss effect (0-7)

    **Returns:**
    * `numpy.ndarray`: Embossed image
    """
    strength = strength / 100.0 * 2.0  # Scale to 0-2 range
    
    # Define kernels for different directions
    kernels = [
        np.array([[-1,-1, 0],
                 [-1, 1, 1],
                 [ 0, 1, 1]]),  # 0 - top left to bottom right
        np.array([[-1, 0, 1],
                 [-1, 1, 1],
                 [-1, 0, 1]]),  # 1 - left to right
        np.array([[ 0, 1, 1],
                 [-1, 1, 1],
                 [-1,-1, 0]]),  # 2 - bottom left to top right
        np.array([[ 1, 1, 1],
                 [ 0, 1, 0],
                 [-1,-1,-1]]),  # 3 - bottom to top
        np.array([[ 1, 1, 0],
                 [ 1, 1,-1],
                 [ 0,-1,-1]]),  # 4 - bottom right to top left
        np.array([[ 1, 0,-1],
                 [ 1, 1,-1],
                 [ 1, 0,-1]]),  # 5 - right to left
        np.array([[ 0,-1,-1],
                 [ 1, 1,-1],
                 [ 1, 1, 0]]),  # 6 - top right to bottom left
        np.array([[-1,-1,-1],
                 [ 0, 1, 0],
                 [ 1, 1, 1]])   # 7 - top to bottom
    ]
    
    # Apply the kernel
    kernel = kernels[direction % 8]
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    embossed = cv2.filter2D(gray, -1, kernel * strength)
    
    # Normalize to ensure good contrast
    embossed = cv2.normalize(embossed, None, 0, 255, cv2.NORM_MINMAX)
    
    # Convert back to BGR
    return cv2.cvtColor(embossed.astype(np.uint8), cv2.COLOR_GRAY2BGR)


@registry.register("Oil Painting", defaults={
    "size": 5,
    "dynRatio": 1,
}, min_vals={
    "size": 1,
    "dynRatio": 1,
}, max_vals={
    "size": 15,
    "dynRatio": 7,
}, step_vals={
    "size": 2,
    "dynRatio": 1,
})
def oil_painting(image, size: int = 5, dynRatio: int = 1):
    """
    ## Apply oil painting effect to the image.

    **Args:**
    * `image` (numpy.ndarray): Input image (BGR)
    * `size` (int): Size of the neighborhood considered
    * `dynRatio` (int): Dynamic ratio affecting the intensity binning

    **Returns:**
    * `numpy.ndarray`: Image with oil painting effect
    """
    return cv2.xphoto.oilPainting(image, size, dynRatio)