|
import torch |
|
import torch.nn as nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from transformers import ( |
|
T5Tokenizer, |
|
T5EncoderModel, |
|
CLIPTokenizer, |
|
CLIPTextModel, |
|
AutoProcessor, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from iopaint.model.anytext.ldm.util import count_params |
|
|
|
|
|
def _expand_mask(mask, dtype, tgt_len=None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill( |
|
inverted_mask.to(torch.bool), torch.finfo(dtype).min |
|
) |
|
|
|
|
|
def _build_causal_attention_mask(bsz, seq_len, dtype): |
|
|
|
|
|
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) |
|
mask.fill_(torch.tensor(torch.finfo(dtype).min)) |
|
mask.triu_(1) |
|
mask = mask.unsqueeze(1) |
|
return mask |
|
|
|
|
|
class AbstractEncoder(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def encode(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
|
|
class IdentityEncoder(AbstractEncoder): |
|
def encode(self, x): |
|
return x |
|
|
|
|
|
class ClassEmbedder(nn.Module): |
|
def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1): |
|
super().__init__() |
|
self.key = key |
|
self.embedding = nn.Embedding(n_classes, embed_dim) |
|
self.n_classes = n_classes |
|
self.ucg_rate = ucg_rate |
|
|
|
def forward(self, batch, key=None, disable_dropout=False): |
|
if key is None: |
|
key = self.key |
|
|
|
c = batch[key][:, None] |
|
if self.ucg_rate > 0.0 and not disable_dropout: |
|
mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) |
|
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1) |
|
c = c.long() |
|
c = self.embedding(c) |
|
return c |
|
|
|
def get_unconditional_conditioning(self, bs, device="cuda"): |
|
uc_class = ( |
|
self.n_classes - 1 |
|
) |
|
uc = torch.ones((bs,), device=device) * uc_class |
|
uc = {self.key: uc} |
|
return uc |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
class FrozenT5Embedder(AbstractEncoder): |
|
"""Uses the T5 transformer encoder for text""" |
|
|
|
def __init__( |
|
self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True |
|
): |
|
super().__init__() |
|
self.tokenizer = T5Tokenizer.from_pretrained(version) |
|
self.transformer = T5EncoderModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.max_length, |
|
return_length=True, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer(input_ids=tokens) |
|
|
|
z = outputs.last_hidden_state |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class FrozenCLIPEmbedder(AbstractEncoder): |
|
"""Uses the CLIP transformer encoder for text (from huggingface)""" |
|
|
|
LAYERS = ["last", "pooled", "hidden"] |
|
|
|
def __init__( |
|
self, |
|
version="openai/clip-vit-large-patch14", |
|
device="cuda", |
|
max_length=77, |
|
freeze=True, |
|
layer="last", |
|
layer_idx=None, |
|
): |
|
super().__init__() |
|
assert layer in self.LAYERS |
|
self.tokenizer = CLIPTokenizer.from_pretrained(version) |
|
self.transformer = CLIPTextModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
self.layer_idx = layer_idx |
|
if layer == "hidden": |
|
assert layer_idx is not None |
|
assert 0 <= abs(layer_idx) <= 12 |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.max_length, |
|
return_length=True, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer( |
|
input_ids=tokens, output_hidden_states=self.layer == "hidden" |
|
) |
|
if self.layer == "last": |
|
z = outputs.last_hidden_state |
|
elif self.layer == "pooled": |
|
z = outputs.pooler_output[:, None, :] |
|
else: |
|
z = outputs.hidden_states[self.layer_idx] |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class FrozenCLIPT5Encoder(AbstractEncoder): |
|
def __init__( |
|
self, |
|
clip_version="openai/clip-vit-large-patch14", |
|
t5_version="google/t5-v1_1-xl", |
|
device="cuda", |
|
clip_max_length=77, |
|
t5_max_length=77, |
|
): |
|
super().__init__() |
|
self.clip_encoder = FrozenCLIPEmbedder( |
|
clip_version, device, max_length=clip_max_length |
|
) |
|
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) |
|
print( |
|
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " |
|
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params." |
|
) |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
def forward(self, text): |
|
clip_z = self.clip_encoder.encode(text) |
|
t5_z = self.t5_encoder.encode(text) |
|
return [clip_z, t5_z] |
|
|
|
|
|
class FrozenCLIPEmbedderT3(AbstractEncoder): |
|
"""Uses the CLIP transformer encoder for text (from Hugging Face)""" |
|
|
|
def __init__( |
|
self, |
|
version="openai/clip-vit-large-patch14", |
|
device="cuda", |
|
max_length=77, |
|
freeze=True, |
|
use_vision=False, |
|
): |
|
super().__init__() |
|
self.tokenizer = CLIPTokenizer.from_pretrained(version) |
|
self.transformer = CLIPTextModel.from_pretrained(version) |
|
if use_vision: |
|
self.vit = CLIPVisionModelWithProjection.from_pretrained(version) |
|
self.processor = AutoProcessor.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
|
|
def embedding_forward( |
|
self, |
|
input_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
embedding_manager=None, |
|
): |
|
seq_length = ( |
|
input_ids.shape[-1] |
|
if input_ids is not None |
|
else inputs_embeds.shape[-2] |
|
) |
|
if position_ids is None: |
|
position_ids = self.position_ids[:, :seq_length] |
|
if inputs_embeds is None: |
|
inputs_embeds = self.token_embedding(input_ids) |
|
if embedding_manager is not None: |
|
inputs_embeds = embedding_manager(input_ids, inputs_embeds) |
|
position_embeddings = self.position_embedding(position_ids) |
|
embeddings = inputs_embeds + position_embeddings |
|
return embeddings |
|
|
|
self.transformer.text_model.embeddings.forward = embedding_forward.__get__( |
|
self.transformer.text_model.embeddings |
|
) |
|
|
|
def encoder_forward( |
|
self, |
|
inputs_embeds, |
|
attention_mask=None, |
|
causal_attention_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
hidden_states = inputs_embeds |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
causal_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
return hidden_states |
|
|
|
self.transformer.text_model.encoder.forward = encoder_forward.__get__( |
|
self.transformer.text_model.encoder |
|
) |
|
|
|
def text_encoder_forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
embedding_manager=None, |
|
): |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
if input_ids is None: |
|
raise ValueError("You have to specify either input_ids") |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
hidden_states = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
embedding_manager=embedding_manager, |
|
) |
|
bsz, seq_len = input_shape |
|
|
|
|
|
causal_attention_mask = _build_causal_attention_mask( |
|
bsz, seq_len, hidden_states.dtype |
|
).to(hidden_states.device) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = _expand_mask(attention_mask, hidden_states.dtype) |
|
last_hidden_state = self.encoder( |
|
inputs_embeds=hidden_states, |
|
attention_mask=attention_mask, |
|
causal_attention_mask=causal_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
last_hidden_state = self.final_layer_norm(last_hidden_state) |
|
return last_hidden_state |
|
|
|
self.transformer.text_model.forward = text_encoder_forward.__get__( |
|
self.transformer.text_model |
|
) |
|
|
|
def transformer_forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
embedding_manager=None, |
|
): |
|
return self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
embedding_manager=embedding_manager, |
|
) |
|
|
|
self.transformer.forward = transformer_forward.__get__(self.transformer) |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text, **kwargs): |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.max_length, |
|
return_length=True, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
z = self.transformer(input_ids=tokens, **kwargs) |
|
return z |
|
|
|
def encode(self, text, **kwargs): |
|
return self(text, **kwargs) |
|
|