Spaces:
Runtime error
Runtime error
| """ | |
| Convert a CogView4 checkpoint from Megatron to the Diffusers format. | |
| Example usage: | |
| python scripts/convert_cogview4_to_diffusers.py \ | |
| --transformer_checkpoint_path 'your path/cogview4_6b/mp_rank_00/model_optim_rng.pt' \ | |
| --vae_checkpoint_path 'your path/cogview4_6b/imagekl_ch16.pt' \ | |
| --output_path "THUDM/CogView4-6B" \ | |
| --dtype "bf16" | |
| Arguments: | |
| --transformer_checkpoint_path: Path to Transformer state dict. | |
| --vae_checkpoint_path: Path to VAE state dict. | |
| --output_path: The path to save the converted model. | |
| --push_to_hub: Whether to push the converted checkpoint to the HF Hub or not. Defaults to `False`. | |
| --text_encoder_cache_dir: Cache directory where text encoder is located. Defaults to None, which means HF_HOME will be used. | |
| --dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32"). If None, the dtype of the state dict is considered. | |
| Default is "bf16" because CogView4 uses bfloat16 for training. | |
| Note: You must provide either --transformer_checkpoint_path or --vae_checkpoint_path. | |
| """ | |
| import argparse | |
| import torch | |
| from tqdm import tqdm | |
| from transformers import GlmModel, PreTrainedTokenizerFast | |
| from diffusers import ( | |
| AutoencoderKL, | |
| CogView4ControlPipeline, | |
| CogView4Pipeline, | |
| CogView4Transformer2DModel, | |
| FlowMatchEulerDiscreteScheduler, | |
| ) | |
| from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--transformer_checkpoint_path", | |
| default=None, | |
| type=str, | |
| help="Path to Megatron (not SAT) Transformer checkpoint, e.g., 'model_optim_rng.pt'.", | |
| ) | |
| parser.add_argument( | |
| "--vae_checkpoint_path", | |
| default=None, | |
| type=str, | |
| help="(Optional) Path to VAE checkpoint, e.g., 'imagekl_ch16.pt'.", | |
| ) | |
| parser.add_argument( | |
| "--output_path", | |
| required=True, | |
| type=str, | |
| help="Directory to save the final Diffusers format pipeline.", | |
| ) | |
| parser.add_argument( | |
| "--push_to_hub", | |
| action="store_true", | |
| default=False, | |
| help="Whether to push the converted model to the HuggingFace Hub.", | |
| ) | |
| parser.add_argument( | |
| "--text_encoder_cache_dir", | |
| type=str, | |
| default=None, | |
| help="Specify the cache directory for the text encoder.", | |
| ) | |
| parser.add_argument( | |
| "--dtype", | |
| type=str, | |
| default="bf16", | |
| choices=["fp16", "bf16", "fp32"], | |
| help="Data type to save the model in.", | |
| ) | |
| parser.add_argument( | |
| "--num_layers", | |
| type=int, | |
| default=28, | |
| help="Number of Transformer layers (e.g., 28, 48...).", | |
| ) | |
| parser.add_argument( | |
| "--num_heads", | |
| type=int, | |
| default=32, | |
| help="Number of attention heads.", | |
| ) | |
| parser.add_argument( | |
| "--hidden_size", | |
| type=int, | |
| default=4096, | |
| help="Transformer hidden dimension size.", | |
| ) | |
| parser.add_argument( | |
| "--attention_head_dim", | |
| type=int, | |
| default=128, | |
| help="Dimension of each attention head.", | |
| ) | |
| parser.add_argument( | |
| "--time_embed_dim", | |
| type=int, | |
| default=512, | |
| help="Dimension of time embeddings.", | |
| ) | |
| parser.add_argument( | |
| "--condition_dim", | |
| type=int, | |
| default=256, | |
| help="Dimension of condition embeddings.", | |
| ) | |
| parser.add_argument( | |
| "--pos_embed_max_size", | |
| type=int, | |
| default=128, | |
| help="Maximum size for positional embeddings.", | |
| ) | |
| parser.add_argument( | |
| "--control", | |
| action="store_true", | |
| default=False, | |
| help="Whether to use control model.", | |
| ) | |
| args = parser.parse_args() | |
| def swap_scale_shift(weight, dim): | |
| """ | |
| Swap the scale and shift components in the weight tensor. | |
| Args: | |
| weight (torch.Tensor): The original weight tensor. | |
| dim (int): The dimension along which to split. | |
| Returns: | |
| torch.Tensor: The modified weight tensor with scale and shift swapped. | |
| """ | |
| shift, scale = weight.chunk(2, dim=dim) | |
| new_weight = torch.cat([scale, shift], dim=dim) | |
| return new_weight | |
| def convert_megatron_transformer_checkpoint_to_diffusers( | |
| ckpt_path: str, | |
| num_layers: int, | |
| num_heads: int, | |
| hidden_size: int, | |
| ): | |
| """ | |
| Convert a Megatron Transformer checkpoint to Diffusers format. | |
| Args: | |
| ckpt_path (str): Path to the Megatron Transformer checkpoint. | |
| num_layers (int): Number of Transformer layers. | |
| num_heads (int): Number of attention heads. | |
| hidden_size (int): Hidden size of the Transformer. | |
| Returns: | |
| dict: The converted state dictionary compatible with Diffusers. | |
| """ | |
| ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=False) | |
| mega = ckpt["model"] | |
| new_state_dict = {} | |
| # Patch Embedding | |
| new_state_dict["patch_embed.proj.weight"] = mega["encoder_expand_linear.weight"].reshape( | |
| hidden_size, 128 if args.control else 64 | |
| ) | |
| new_state_dict["patch_embed.proj.bias"] = mega["encoder_expand_linear.bias"] | |
| new_state_dict["patch_embed.text_proj.weight"] = mega["text_projector.weight"] | |
| new_state_dict["patch_embed.text_proj.bias"] = mega["text_projector.bias"] | |
| # Time Condition Embedding | |
| new_state_dict["time_condition_embed.timestep_embedder.linear_1.weight"] = mega[ | |
| "time_embedding.time_embed.0.weight" | |
| ] | |
| new_state_dict["time_condition_embed.timestep_embedder.linear_1.bias"] = mega["time_embedding.time_embed.0.bias"] | |
| new_state_dict["time_condition_embed.timestep_embedder.linear_2.weight"] = mega[ | |
| "time_embedding.time_embed.2.weight" | |
| ] | |
| new_state_dict["time_condition_embed.timestep_embedder.linear_2.bias"] = mega["time_embedding.time_embed.2.bias"] | |
| new_state_dict["time_condition_embed.condition_embedder.linear_1.weight"] = mega[ | |
| "label_embedding.label_embed.0.weight" | |
| ] | |
| new_state_dict["time_condition_embed.condition_embedder.linear_1.bias"] = mega[ | |
| "label_embedding.label_embed.0.bias" | |
| ] | |
| new_state_dict["time_condition_embed.condition_embedder.linear_2.weight"] = mega[ | |
| "label_embedding.label_embed.2.weight" | |
| ] | |
| new_state_dict["time_condition_embed.condition_embedder.linear_2.bias"] = mega[ | |
| "label_embedding.label_embed.2.bias" | |
| ] | |
| # Convert each Transformer layer | |
| for i in tqdm(range(num_layers), desc="Converting layers (Megatron->Diffusers)"): | |
| block_prefix = f"transformer_blocks.{i}." | |
| # AdaLayerNorm | |
| new_state_dict[block_prefix + "norm1.linear.weight"] = mega[f"decoder.layers.{i}.adaln.weight"] | |
| new_state_dict[block_prefix + "norm1.linear.bias"] = mega[f"decoder.layers.{i}.adaln.bias"] | |
| qkv_weight = mega[f"decoder.layers.{i}.self_attention.linear_qkv.weight"] | |
| qkv_bias = mega[f"decoder.layers.{i}.self_attention.linear_qkv.bias"] | |
| # Reshape to match SAT logic | |
| qkv_weight = qkv_weight.view(num_heads, 3, hidden_size // num_heads, hidden_size) | |
| qkv_weight = qkv_weight.permute(1, 0, 2, 3).reshape(3 * hidden_size, hidden_size) | |
| qkv_bias = qkv_bias.view(num_heads, 3, hidden_size // num_heads) | |
| qkv_bias = qkv_bias.permute(1, 0, 2).reshape(3 * hidden_size) | |
| # Assign to Diffusers keys | |
| q, k, v = torch.chunk(qkv_weight, 3, dim=0) | |
| qb, kb, vb = torch.chunk(qkv_bias, 3, dim=0) | |
| new_state_dict[block_prefix + "attn1.to_q.weight"] = q | |
| new_state_dict[block_prefix + "attn1.to_q.bias"] = qb | |
| new_state_dict[block_prefix + "attn1.to_k.weight"] = k | |
| new_state_dict[block_prefix + "attn1.to_k.bias"] = kb | |
| new_state_dict[block_prefix + "attn1.to_v.weight"] = v | |
| new_state_dict[block_prefix + "attn1.to_v.bias"] = vb | |
| # Attention Output | |
| new_state_dict[block_prefix + "attn1.to_out.0.weight"] = mega[ | |
| f"decoder.layers.{i}.self_attention.linear_proj.weight" | |
| ] | |
| new_state_dict[block_prefix + "attn1.to_out.0.bias"] = mega[ | |
| f"decoder.layers.{i}.self_attention.linear_proj.bias" | |
| ] | |
| # MLP | |
| new_state_dict[block_prefix + "ff.net.0.proj.weight"] = mega[f"decoder.layers.{i}.mlp.linear_fc1.weight"] | |
| new_state_dict[block_prefix + "ff.net.0.proj.bias"] = mega[f"decoder.layers.{i}.mlp.linear_fc1.bias"] | |
| new_state_dict[block_prefix + "ff.net.2.weight"] = mega[f"decoder.layers.{i}.mlp.linear_fc2.weight"] | |
| new_state_dict[block_prefix + "ff.net.2.bias"] = mega[f"decoder.layers.{i}.mlp.linear_fc2.bias"] | |
| # Final Layers | |
| new_state_dict["norm_out.linear.weight"] = swap_scale_shift(mega["adaln_final.weight"], dim=0) | |
| new_state_dict["norm_out.linear.bias"] = swap_scale_shift(mega["adaln_final.bias"], dim=0) | |
| new_state_dict["proj_out.weight"] = mega["output_projector.weight"] | |
| new_state_dict["proj_out.bias"] = mega["output_projector.bias"] | |
| return new_state_dict | |
| def convert_cogview4_vae_checkpoint_to_diffusers(ckpt_path, vae_config): | |
| """ | |
| Convert a CogView4 VAE checkpoint to Diffusers format. | |
| Args: | |
| ckpt_path (str): Path to the VAE checkpoint. | |
| vae_config (dict): Configuration dictionary for the VAE. | |
| Returns: | |
| dict: The converted VAE state dictionary compatible with Diffusers. | |
| """ | |
| original_state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)["state_dict"] | |
| return convert_ldm_vae_checkpoint(original_state_dict, vae_config) | |
| def main(args): | |
| """ | |
| Main function to convert CogView4 checkpoints to Diffusers format. | |
| Args: | |
| args (argparse.Namespace): Parsed command-line arguments. | |
| """ | |
| # Determine the desired data type | |
| if args.dtype == "fp16": | |
| dtype = torch.float16 | |
| elif args.dtype == "bf16": | |
| dtype = torch.bfloat16 | |
| elif args.dtype == "fp32": | |
| dtype = torch.float32 | |
| else: | |
| raise ValueError(f"Unsupported dtype: {args.dtype}") | |
| transformer = None | |
| vae = None | |
| # Convert Transformer checkpoint if provided | |
| if args.transformer_checkpoint_path is not None: | |
| converted_transformer_state_dict = convert_megatron_transformer_checkpoint_to_diffusers( | |
| ckpt_path=args.transformer_checkpoint_path, | |
| num_layers=args.num_layers, | |
| num_heads=args.num_heads, | |
| hidden_size=args.hidden_size, | |
| ) | |
| transformer = CogView4Transformer2DModel( | |
| patch_size=2, | |
| in_channels=32 if args.control else 16, | |
| num_layers=args.num_layers, | |
| attention_head_dim=args.attention_head_dim, | |
| num_attention_heads=args.num_heads, | |
| out_channels=16, | |
| text_embed_dim=args.hidden_size, | |
| time_embed_dim=args.time_embed_dim, | |
| condition_dim=args.condition_dim, | |
| pos_embed_max_size=args.pos_embed_max_size, | |
| ) | |
| transformer.load_state_dict(converted_transformer_state_dict, strict=True) | |
| # Convert to the specified dtype | |
| if dtype is not None: | |
| transformer = transformer.to(dtype=dtype) | |
| # Convert VAE checkpoint if provided | |
| if args.vae_checkpoint_path is not None: | |
| vae_config = { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "down_block_types": ("DownEncoderBlock2D",) * 4, | |
| "up_block_types": ("UpDecoderBlock2D",) * 4, | |
| "block_out_channels": (128, 512, 1024, 1024), | |
| "layers_per_block": 3, | |
| "act_fn": "silu", | |
| "latent_channels": 16, | |
| "norm_num_groups": 32, | |
| "sample_size": 1024, | |
| "scaling_factor": 1.0, | |
| "shift_factor": 0.0, | |
| "force_upcast": True, | |
| "use_quant_conv": False, | |
| "use_post_quant_conv": False, | |
| "mid_block_add_attention": False, | |
| } | |
| converted_vae_state_dict = convert_cogview4_vae_checkpoint_to_diffusers(args.vae_checkpoint_path, vae_config) | |
| vae = AutoencoderKL(**vae_config) | |
| vae.load_state_dict(converted_vae_state_dict, strict=True) | |
| if dtype is not None: | |
| vae = vae.to(dtype=dtype) | |
| # Load the text encoder and tokenizer | |
| text_encoder_id = "THUDM/glm-4-9b-hf" | |
| tokenizer = PreTrainedTokenizerFast.from_pretrained(text_encoder_id) | |
| text_encoder = GlmModel.from_pretrained( | |
| text_encoder_id, | |
| cache_dir=args.text_encoder_cache_dir, | |
| torch_dtype=torch.bfloat16 if args.dtype == "bf16" else torch.float32, | |
| ) | |
| for param in text_encoder.parameters(): | |
| param.data = param.data.contiguous() | |
| # Initialize the scheduler | |
| scheduler = FlowMatchEulerDiscreteScheduler( | |
| base_shift=0.25, max_shift=0.75, base_image_seq_len=256, use_dynamic_shifting=True, time_shift_type="linear" | |
| ) | |
| # Create the pipeline | |
| if args.control: | |
| pipe = CogView4ControlPipeline( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| else: | |
| pipe = CogView4Pipeline( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| # Save the converted pipeline | |
| pipe.save_pretrained( | |
| args.output_path, | |
| safe_serialization=True, | |
| max_shard_size="5GB", | |
| push_to_hub=args.push_to_hub, | |
| ) | |
| if __name__ == "__main__": | |
| main(args) | |