Spaces:
Runtime error
Runtime error
| # from accelerate.utils import write_basic_config | |
| # | |
| # write_basic_config() | |
| import argparse | |
| import logging | |
| import math | |
| import os | |
| import shutil | |
| from pathlib import Path | |
| import accelerate | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration, set_seed | |
| from packaging import version | |
| from tqdm.auto import tqdm | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDPMScheduler, | |
| EulerDiscreteScheduler, | |
| StableDiffusionGLIGENPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils import is_wandb_available, make_image_grid | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| if is_wandb_available(): | |
| pass | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| # check_min_version("0.28.0.dev0") | |
| logger = get_logger(__name__) | |
| def log_validation(vae, text_encoder, tokenizer, unet, noise_scheduler, args, accelerator, step, weight_dtype): | |
| if accelerator.is_main_process: | |
| print("generate test images...") | |
| unet = accelerator.unwrap_model(unet) | |
| vae.to(accelerator.device, dtype=torch.float32) | |
| pipeline = StableDiffusionGLIGENPipeline( | |
| vae, | |
| text_encoder, | |
| tokenizer, | |
| unet, | |
| EulerDiscreteScheduler.from_config(noise_scheduler.config), | |
| safety_checker=None, | |
| feature_extractor=None, | |
| ) | |
| pipeline = pipeline.to(accelerator.device) | |
| pipeline.set_progress_bar_config(disable=not accelerator.is_main_process) | |
| if args.enable_xformers_memory_efficient_attention: | |
| pipeline.enable_xformers_memory_efficient_attention() | |
| if args.seed is None: | |
| generator = None | |
| else: | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| prompt = "A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky" | |
| boxes = [ | |
| [0.041015625, 0.548828125, 0.453125, 0.859375], | |
| [0.525390625, 0.552734375, 0.93359375, 0.865234375], | |
| [0.12890625, 0.015625, 0.412109375, 0.279296875], | |
| [0.578125, 0.08203125, 0.857421875, 0.27734375], | |
| ] | |
| gligen_phrases = ["a green car", "a blue truck", "a red air balloon", "a bird"] | |
| images = pipeline( | |
| prompt=prompt, | |
| gligen_phrases=gligen_phrases, | |
| gligen_boxes=boxes, | |
| gligen_scheduled_sampling_beta=1.0, | |
| output_type="pil", | |
| num_inference_steps=50, | |
| negative_prompt="artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate", | |
| num_images_per_prompt=4, | |
| generator=generator, | |
| ).images | |
| os.makedirs(os.path.join(args.output_dir, "images"), exist_ok=True) | |
| make_image_grid(images, 1, 4).save( | |
| os.path.join(args.output_dir, "images", f"generated-images-{step:06d}-{accelerator.process_index:02d}.png") | |
| ) | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") | |
| parser.add_argument( | |
| "--data_path", | |
| type=str, | |
| default="coco_train2017.pth", | |
| help="Path to training dataset.", | |
| ) | |
| parser.add_argument( | |
| "--image_path", | |
| type=str, | |
| default="coco_train2017.pth", | |
| help="Path to training images.", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="controlnet-model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
| "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
| "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
| "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
| "instructions." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=5e-6, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--set_grads_to_none", | |
| action="store_true", | |
| help=( | |
| "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
| " behaviors, so disable this argument if it causes any problems. More info:" | |
| " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="train_controlnet", | |
| help=( | |
| "The `project_name` argument passed to Accelerator.init_trackers for" | |
| " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
| ), | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| def main(args): | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Disable AMP for MPS. | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| # import correct text encoder class | |
| # text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) | |
| # Load scheduler and models | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| pretrained_model_name_or_path = "masterful/gligen-1-4-generation-text-box" | |
| tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") | |
| noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") | |
| text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder") | |
| vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") | |
| unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet") | |
| # Taken from [Sayak Paul's Diffusers PR #6511](https://github.com/huggingface/diffusers/pull/6511/files) | |
| def unwrap_model(model): | |
| model = accelerator.unwrap_model(model) | |
| model = model._orig_mod if is_compiled_module(model) else model | |
| return model | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| i = len(weights) - 1 | |
| while len(weights) > 0: | |
| weights.pop() | |
| model = models[i] | |
| sub_dir = "unet" | |
| model.save_pretrained(os.path.join(output_dir, sub_dir)) | |
| i -= 1 | |
| def load_model_hook(models, input_dir): | |
| while len(models) > 0: | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| # load diffusers style into model | |
| load_model = unet.from_pretrained(input_dir, subfolder="unet") | |
| model.register_to_config(**load_model.config) | |
| model.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| vae.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| text_encoder.requires_grad_(False) | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warning( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| # controlnet.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| # if args.gradient_checkpointing: | |
| # controlnet.enable_gradient_checkpointing() | |
| # Check that all trainable models are in full precision | |
| low_precision_error_string = ( | |
| " Please make sure to always have all model weights in full float32 precision when starting training - even if" | |
| " doing mixed precision training, copy of the weights should still be float32." | |
| ) | |
| if unwrap_model(unet).dtype != torch.float32: | |
| raise ValueError(f"Controlnet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}") | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| optimizer_class = torch.optim.AdamW | |
| # Optimizer creation | |
| for n, m in unet.named_modules(): | |
| if ("fuser" in n) or ("position_net" in n): | |
| import torch.nn as nn | |
| if isinstance(m, (nn.Linear, nn.LayerNorm)): | |
| m.reset_parameters() | |
| params_to_optimize = [] | |
| for n, p in unet.named_parameters(): | |
| if ("fuser" in n) or ("position_net" in n): | |
| p.requires_grad = True | |
| params_to_optimize.append(p) | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| from dataset import COCODataset | |
| train_dataset = COCODataset( | |
| data_path=args.data_path, | |
| image_path=args.image_path, | |
| tokenizer=tokenizer, | |
| image_size=args.resolution, | |
| max_boxes_per_data=30, | |
| ) | |
| print("num samples: ", len(train_dataset)) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| shuffle=True, | |
| # collate_fn=collate_fn, | |
| batch_size=args.train_batch_size, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
| num_training_steps=args.max_train_steps * accelerator.num_processes, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move vae, unet and text_encoder to device and cast to weight_dtype | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| # unet.to(accelerator.device, dtype=weight_dtype) | |
| unet.to(accelerator.device, dtype=torch.float32) | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_config = dict(vars(args)) | |
| # tensorboard cannot handle list types for config | |
| # tracker_config.pop("validation_prompt") | |
| # tracker_config.pop("validation_image") | |
| accelerator.init_trackers(args.tracker_project_name, config=tracker_config) | |
| # Train! | |
| # total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| # logger.info("***** Running training *****") | |
| # logger.info(f" Num examples = {len(train_dataset)}") | |
| # logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| # logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| # logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| # logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| # logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| # logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| log_validation( | |
| vae, | |
| text_encoder, | |
| tokenizer, | |
| unet, | |
| noise_scheduler, | |
| args, | |
| accelerator, | |
| global_step, | |
| weight_dtype, | |
| ) | |
| # image_logs = None | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| for step, batch in enumerate(train_dataloader): | |
| with accelerator.accumulate(unet): | |
| # Convert images to latent space | |
| latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() | |
| latents = latents * vae.config.scaling_factor | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents) | |
| bsz = latents.shape[0] | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| with torch.no_grad(): | |
| # Get the text embedding for conditioning | |
| encoder_hidden_states = text_encoder( | |
| batch["caption"]["input_ids"].squeeze(1), | |
| # batch['caption']['attention_mask'].squeeze(1), | |
| return_dict=False, | |
| )[0] | |
| cross_attention_kwargs = {} | |
| cross_attention_kwargs["gligen"] = { | |
| "boxes": batch["boxes"], | |
| "positive_embeddings": batch["text_embeddings_before_projection"], | |
| "masks": batch["masks"], | |
| } | |
| # Predict the noise residual | |
| model_pred = unet( | |
| noisy_latents, | |
| timesteps, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if global_step % args.checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step:06d}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| # if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
| log_validation( | |
| vae, | |
| text_encoder, | |
| tokenizer, | |
| unet, | |
| noise_scheduler, | |
| args, | |
| accelerator, | |
| global_step, | |
| weight_dtype, | |
| ) | |
| logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Create the pipeline using using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| unet = unwrap_model(unet) | |
| unet.save_pretrained(args.output_dir) | |
| # | |
| # # Run a final round of validation. | |
| # image_logs = None | |
| # if args.validation_prompt is not None: | |
| # image_logs = log_validation( | |
| # vae=vae, | |
| # text_encoder=text_encoder, | |
| # tokenizer=tokenizer, | |
| # unet=unet, | |
| # controlnet=None, | |
| # args=args, | |
| # accelerator=accelerator, | |
| # weight_dtype=weight_dtype, | |
| # step=global_step, | |
| # is_final_validation=True, | |
| # ) | |
| # | |
| # if args.push_to_hub: | |
| # save_model_card( | |
| # repo_id, | |
| # image_logs=image_logs, | |
| # base_model=args.pretrained_model_name_or_path, | |
| # repo_folder=args.output_dir, | |
| # ) | |
| # upload_folder( | |
| # repo_id=repo_id, | |
| # folder_path=args.output_dir, | |
| # commit_message="End of training", | |
| # ignore_patterns=["step_*", "epoch_*"], | |
| # ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |