Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. | |
| # All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import logging | |
| import math | |
| import os | |
| import shutil | |
| from pathlib import Path | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torchvision.transforms as TT | |
| import transformers | |
| from accelerate import Accelerator, DistributedType | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed | |
| from huggingface_hub import create_repo, upload_folder | |
| from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict | |
| from torch.utils.data import DataLoader, Dataset | |
| from torchvision.transforms import InterpolationMode | |
| from torchvision.transforms.functional import resize | |
| from tqdm.auto import tqdm | |
| from transformers import AutoTokenizer, T5EncoderModel, T5Tokenizer | |
| import diffusers | |
| from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models.embeddings import get_3d_rotary_pos_embed | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid | |
| from diffusers.training_utils import cast_training_params, free_memory | |
| from diffusers.utils import check_min_version, convert_unet_state_dict_to_peft, export_to_video, is_wandb_available | |
| from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.34.0.dev0") | |
| logger = get_logger(__name__) | |
| def get_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script for CogVideoX.") | |
| # Model information | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default=None, | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| # Dataset information | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--instance_data_root", | |
| type=str, | |
| default=None, | |
| help=("A folder containing the training data."), | |
| ) | |
| parser.add_argument( | |
| "--video_column", | |
| type=str, | |
| default="video", | |
| help="The column of the dataset containing videos. Or, the name of the file in `--instance_data_root` folder containing the line-separated path to video data.", | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default="text", | |
| help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--instance_data_root` folder containing the line-separated instance prompts.", | |
| ) | |
| parser.add_argument( | |
| "--id_token", type=str, default=None, help="Identifier token appended to the start of each prompt if provided." | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| # Validation | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.", | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt_separator", | |
| type=str, | |
| default=":::", | |
| help="String that separates multiple validation prompts", | |
| ) | |
| parser.add_argument( | |
| "--num_validation_videos", | |
| type=int, | |
| default=1, | |
| help="Number of videos that should be generated during validation per `validation_prompt`.", | |
| ) | |
| parser.add_argument( | |
| "--validation_epochs", | |
| type=int, | |
| default=50, | |
| help=( | |
| "Run validation every X epochs. Validation consists of running the prompt `args.validation_prompt` multiple times: `args.num_validation_videos`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--guidance_scale", | |
| type=float, | |
| default=6, | |
| help="The guidance scale to use while sampling validation videos.", | |
| ) | |
| parser.add_argument( | |
| "--use_dynamic_cfg", | |
| action="store_true", | |
| default=False, | |
| help="Whether or not to use the default cosine dynamic guidance schedule when sampling validation videos.", | |
| ) | |
| # Training information | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--rank", | |
| type=int, | |
| default=128, | |
| help=("The dimension of the LoRA update matrices."), | |
| ) | |
| parser.add_argument( | |
| "--lora_alpha", | |
| type=float, | |
| default=128, | |
| help=("The scaling factor to scale LoRA weight update. The actual scaling factor is `lora_alpha / rank`"), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="cogvideox-lora", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--height", | |
| type=int, | |
| default=480, | |
| help="All input videos are resized to this height.", | |
| ) | |
| parser.add_argument( | |
| "--width", | |
| type=int, | |
| default=720, | |
| help="All input videos are resized to this width.", | |
| ) | |
| parser.add_argument( | |
| "--video_reshape_mode", | |
| type=str, | |
| default="center", | |
| help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']", | |
| ) | |
| parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.") | |
| parser.add_argument( | |
| "--max_num_frames", type=int, default=49, help="All input videos will be truncated to these many frames." | |
| ) | |
| parser.add_argument( | |
| "--skip_frames_start", | |
| type=int, | |
| default=0, | |
| help="Number of frames to skip from the beginning of each input video. Useful if training data contains intro sequences.", | |
| ) | |
| parser.add_argument( | |
| "--skip_frames_end", | |
| type=int, | |
| default=0, | |
| help="Number of frames to skip from the end of each input video. Useful if training data contains outro sequences.", | |
| ) | |
| parser.add_argument( | |
| "--random_flip", | |
| action="store_true", | |
| help="whether to randomly flip videos horizontally", | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
| " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--enable_slicing", | |
| action="store_true", | |
| default=False, | |
| help="Whether or not to use VAE slicing for saving memory.", | |
| ) | |
| parser.add_argument( | |
| "--enable_tiling", | |
| action="store_true", | |
| default=False, | |
| help="Whether or not to use VAE tiling for saving memory.", | |
| ) | |
| # Optimizer | |
| parser.add_argument( | |
| "--optimizer", | |
| type=lambda s: s.lower(), | |
| default="adam", | |
| choices=["adam", "adamw", "prodigy"], | |
| help=("The optimizer type to use."), | |
| ) | |
| parser.add_argument( | |
| "--use_8bit_adam", | |
| action="store_true", | |
| help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", | |
| ) | |
| parser.add_argument( | |
| "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." | |
| ) | |
| parser.add_argument( | |
| "--adam_beta2", type=float, default=0.95, help="The beta2 parameter for the Adam and Prodigy optimizers." | |
| ) | |
| parser.add_argument( | |
| "--prodigy_beta3", | |
| type=float, | |
| default=None, | |
| help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.", | |
| ) | |
| parser.add_argument("--prodigy_decouple", action="store_true", help="Use AdamW style decoupled weight decay") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") | |
| parser.add_argument( | |
| "--adam_epsilon", | |
| type=float, | |
| default=1e-08, | |
| help="Epsilon value for the Adam optimizer and Prodigy optimizers.", | |
| ) | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--prodigy_use_bias_correction", action="store_true", help="Turn on Adam's bias correction.") | |
| parser.add_argument( | |
| "--prodigy_safeguard_warmup", | |
| action="store_true", | |
| help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage.", | |
| ) | |
| # Other information | |
| parser.add_argument("--tracker_name", type=str, default=None, help="Project tracker name") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help="Directory where logs are stored.", | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default=None, | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| return parser.parse_args() | |
| class VideoDataset(Dataset): | |
| def __init__( | |
| self, | |
| instance_data_root: Optional[str] = None, | |
| dataset_name: Optional[str] = None, | |
| dataset_config_name: Optional[str] = None, | |
| caption_column: str = "text", | |
| video_column: str = "video", | |
| height: int = 480, | |
| width: int = 720, | |
| video_reshape_mode: str = "center", | |
| fps: int = 8, | |
| max_num_frames: int = 49, | |
| skip_frames_start: int = 0, | |
| skip_frames_end: int = 0, | |
| cache_dir: Optional[str] = None, | |
| id_token: Optional[str] = None, | |
| ) -> None: | |
| super().__init__() | |
| self.instance_data_root = Path(instance_data_root) if instance_data_root is not None else None | |
| self.dataset_name = dataset_name | |
| self.dataset_config_name = dataset_config_name | |
| self.caption_column = caption_column | |
| self.video_column = video_column | |
| self.height = height | |
| self.width = width | |
| self.video_reshape_mode = video_reshape_mode | |
| self.fps = fps | |
| self.max_num_frames = max_num_frames | |
| self.skip_frames_start = skip_frames_start | |
| self.skip_frames_end = skip_frames_end | |
| self.cache_dir = cache_dir | |
| self.id_token = id_token or "" | |
| if dataset_name is not None: | |
| self.instance_prompts, self.instance_video_paths = self._load_dataset_from_hub() | |
| else: | |
| self.instance_prompts, self.instance_video_paths = self._load_dataset_from_local_path() | |
| self.num_instance_videos = len(self.instance_video_paths) | |
| if self.num_instance_videos != len(self.instance_prompts): | |
| raise ValueError( | |
| f"Expected length of instance prompts and videos to be the same but found {len(self.instance_prompts)=} and {len(self.instance_video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset." | |
| ) | |
| self.instance_videos = self._preprocess_data() | |
| def __len__(self): | |
| return self.num_instance_videos | |
| def __getitem__(self, index): | |
| return { | |
| "instance_prompt": self.id_token + self.instance_prompts[index], | |
| "instance_video": self.instance_videos[index], | |
| } | |
| def _load_dataset_from_hub(self): | |
| try: | |
| from datasets import load_dataset | |
| except ImportError: | |
| raise ImportError( | |
| "You are trying to load your data using the datasets library. If you wish to train using custom " | |
| "captions please install the datasets library: `pip install datasets`. If you wish to load a " | |
| "local folder containing images only, specify --instance_data_root instead." | |
| ) | |
| # Downloading and loading a dataset from the hub. See more about loading custom images at | |
| # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script | |
| dataset = load_dataset( | |
| self.dataset_name, | |
| self.dataset_config_name, | |
| cache_dir=self.cache_dir, | |
| ) | |
| column_names = dataset["train"].column_names | |
| if self.video_column is None: | |
| video_column = column_names[0] | |
| logger.info(f"`video_column` defaulting to {video_column}") | |
| else: | |
| video_column = self.video_column | |
| if video_column not in column_names: | |
| raise ValueError( | |
| f"`--video_column` value '{video_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| if self.caption_column is None: | |
| caption_column = column_names[1] | |
| logger.info(f"`caption_column` defaulting to {caption_column}") | |
| else: | |
| caption_column = self.caption_column | |
| if self.caption_column not in column_names: | |
| raise ValueError( | |
| f"`--caption_column` value '{self.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| instance_prompts = dataset["train"][caption_column] | |
| instance_videos = [Path(self.instance_data_root, filepath) for filepath in dataset["train"][video_column]] | |
| return instance_prompts, instance_videos | |
| def _load_dataset_from_local_path(self): | |
| if not self.instance_data_root.exists(): | |
| raise ValueError("Instance videos root folder does not exist") | |
| prompt_path = self.instance_data_root.joinpath(self.caption_column) | |
| video_path = self.instance_data_root.joinpath(self.video_column) | |
| if not prompt_path.exists() or not prompt_path.is_file(): | |
| raise ValueError( | |
| "Expected `--caption_column` to be path to a file in `--instance_data_root` containing line-separated text prompts." | |
| ) | |
| if not video_path.exists() or not video_path.is_file(): | |
| raise ValueError( | |
| "Expected `--video_column` to be path to a file in `--instance_data_root` containing line-separated paths to video data in the same directory." | |
| ) | |
| with open(prompt_path, "r", encoding="utf-8") as file: | |
| instance_prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0] | |
| with open(video_path, "r", encoding="utf-8") as file: | |
| instance_videos = [ | |
| self.instance_data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0 | |
| ] | |
| if any(not path.is_file() for path in instance_videos): | |
| raise ValueError( | |
| "Expected '--video_column' to be a path to a file in `--instance_data_root` containing line-separated paths to video data but found at least one path that is not a valid file." | |
| ) | |
| return instance_prompts, instance_videos | |
| def _resize_for_rectangle_crop(self, arr): | |
| image_size = self.height, self.width | |
| reshape_mode = self.video_reshape_mode | |
| if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]: | |
| arr = resize( | |
| arr, | |
| size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])], | |
| interpolation=InterpolationMode.BICUBIC, | |
| ) | |
| else: | |
| arr = resize( | |
| arr, | |
| size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]], | |
| interpolation=InterpolationMode.BICUBIC, | |
| ) | |
| h, w = arr.shape[2], arr.shape[3] | |
| arr = arr.squeeze(0) | |
| delta_h = h - image_size[0] | |
| delta_w = w - image_size[1] | |
| if reshape_mode == "random" or reshape_mode == "none": | |
| top = np.random.randint(0, delta_h + 1) | |
| left = np.random.randint(0, delta_w + 1) | |
| elif reshape_mode == "center": | |
| top, left = delta_h // 2, delta_w // 2 | |
| else: | |
| raise NotImplementedError | |
| arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1]) | |
| return arr | |
| def _preprocess_data(self): | |
| try: | |
| import decord | |
| except ImportError: | |
| raise ImportError( | |
| "The `decord` package is required for loading the video dataset. Install with `pip install decord`" | |
| ) | |
| decord.bridge.set_bridge("torch") | |
| progress_dataset_bar = tqdm( | |
| range(0, len(self.instance_video_paths)), | |
| desc="Loading progress resize and crop videos", | |
| ) | |
| videos = [] | |
| for filename in self.instance_video_paths: | |
| video_reader = decord.VideoReader(uri=filename.as_posix()) | |
| video_num_frames = len(video_reader) | |
| start_frame = min(self.skip_frames_start, video_num_frames) | |
| end_frame = max(0, video_num_frames - self.skip_frames_end) | |
| if end_frame <= start_frame: | |
| frames = video_reader.get_batch([start_frame]) | |
| elif end_frame - start_frame <= self.max_num_frames: | |
| frames = video_reader.get_batch(list(range(start_frame, end_frame))) | |
| else: | |
| indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames)) | |
| frames = video_reader.get_batch(indices) | |
| # Ensure that we don't go over the limit | |
| frames = frames[: self.max_num_frames] | |
| selected_num_frames = frames.shape[0] | |
| # Choose first (4k + 1) frames as this is how many is required by the VAE | |
| remainder = (3 + (selected_num_frames % 4)) % 4 | |
| if remainder != 0: | |
| frames = frames[:-remainder] | |
| selected_num_frames = frames.shape[0] | |
| assert (selected_num_frames - 1) % 4 == 0 | |
| # Training transforms | |
| frames = (frames - 127.5) / 127.5 | |
| frames = frames.permute(0, 3, 1, 2) # [F, C, H, W] | |
| progress_dataset_bar.set_description( | |
| f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}" | |
| ) | |
| frames = self._resize_for_rectangle_crop(frames) | |
| videos.append(frames.contiguous()) # [F, C, H, W] | |
| progress_dataset_bar.update(1) | |
| progress_dataset_bar.close() | |
| return videos | |
| def save_model_card( | |
| repo_id: str, | |
| videos=None, | |
| base_model: str = None, | |
| validation_prompt=None, | |
| repo_folder=None, | |
| fps=8, | |
| ): | |
| widget_dict = [] | |
| if videos is not None: | |
| for i, video in enumerate(videos): | |
| export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4", fps=fps)) | |
| widget_dict.append( | |
| {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"video_{i}.mp4"}} | |
| ) | |
| model_description = f""" | |
| # CogVideoX LoRA - {repo_id} | |
| <Gallery /> | |
| ## Model description | |
| These are {repo_id} LoRA weights for {base_model}. | |
| The weights were trained using the [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py). | |
| Was LoRA for the text encoder enabled? No. | |
| ## Download model | |
| [Download the *.safetensors LoRA]({repo_id}/tree/main) in the Files & versions tab. | |
| ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) | |
| ```py | |
| from diffusers import CogVideoXPipeline | |
| import torch | |
| pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cuda") | |
| pipe.load_lora_weights("{repo_id}", weight_name="pytorch_lora_weights.safetensors", adapter_name=["cogvideox-lora"]) | |
| # The LoRA adapter weights are determined by what was used for training. | |
| # In this case, we assume `--lora_alpha` is 32 and `--rank` is 64. | |
| # It can be made lower or higher from what was used in training to decrease or amplify the effect | |
| # of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows. | |
| pipe.set_adapters(["cogvideox-lora"], [32 / 64]) | |
| video = pipe("{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0] | |
| ``` | |
| For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) | |
| ## License | |
| Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE) and [here](https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE). | |
| """ | |
| model_card = load_or_create_model_card( | |
| repo_id_or_path=repo_id, | |
| from_training=True, | |
| license="other", | |
| base_model=base_model, | |
| prompt=validation_prompt, | |
| model_description=model_description, | |
| widget=widget_dict, | |
| ) | |
| tags = [ | |
| "text-to-video", | |
| "diffusers-training", | |
| "diffusers", | |
| "lora", | |
| "cogvideox", | |
| "cogvideox-diffusers", | |
| "template:sd-lora", | |
| ] | |
| model_card = populate_model_card(model_card, tags=tags) | |
| model_card.save(os.path.join(repo_folder, "README.md")) | |
| def log_validation( | |
| pipe, | |
| args, | |
| accelerator, | |
| pipeline_args, | |
| epoch, | |
| is_final_validation: bool = False, | |
| ): | |
| logger.info( | |
| f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}." | |
| ) | |
| # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it | |
| scheduler_args = {} | |
| if "variance_type" in pipe.scheduler.config: | |
| variance_type = pipe.scheduler.config.variance_type | |
| if variance_type in ["learned", "learned_range"]: | |
| variance_type = "fixed_small" | |
| scheduler_args["variance_type"] = variance_type | |
| pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args) | |
| pipe = pipe.to(accelerator.device) | |
| # pipe.set_progress_bar_config(disable=True) | |
| # run inference | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None | |
| videos = [] | |
| for _ in range(args.num_validation_videos): | |
| pt_images = pipe(**pipeline_args, generator=generator, output_type="pt").frames[0] | |
| pt_images = torch.stack([pt_images[i] for i in range(pt_images.shape[0])]) | |
| image_np = VaeImageProcessor.pt_to_numpy(pt_images) | |
| image_pil = VaeImageProcessor.numpy_to_pil(image_np) | |
| videos.append(image_pil) | |
| for tracker in accelerator.trackers: | |
| phase_name = "test" if is_final_validation else "validation" | |
| if tracker.name == "wandb": | |
| video_filenames = [] | |
| for i, video in enumerate(videos): | |
| prompt = ( | |
| pipeline_args["prompt"][:25] | |
| .replace(" ", "_") | |
| .replace(" ", "_") | |
| .replace("'", "_") | |
| .replace('"', "_") | |
| .replace("/", "_") | |
| ) | |
| filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4") | |
| export_to_video(video, filename, fps=8) | |
| video_filenames.append(filename) | |
| tracker.log( | |
| { | |
| phase_name: [ | |
| wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}") | |
| for i, filename in enumerate(video_filenames) | |
| ] | |
| } | |
| ) | |
| del pipe | |
| free_memory() | |
| return videos | |
| def _get_t5_prompt_embeds( | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| prompt: Union[str, List[str]], | |
| num_videos_per_prompt: int = 1, | |
| max_sequence_length: int = 226, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| text_input_ids=None, | |
| ): | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if tokenizer is not None: | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| else: | |
| if text_input_ids is None: | |
| raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.") | |
| prompt_embeds = text_encoder(text_input_ids.to(device))[0] | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| _, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
| return prompt_embeds | |
| def encode_prompt( | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| prompt: Union[str, List[str]], | |
| num_videos_per_prompt: int = 1, | |
| max_sequence_length: int = 226, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| text_input_ids=None, | |
| ): | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| prompt_embeds = _get_t5_prompt_embeds( | |
| tokenizer, | |
| text_encoder, | |
| prompt=prompt, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| text_input_ids=text_input_ids, | |
| ) | |
| return prompt_embeds | |
| def compute_prompt_embeddings( | |
| tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False | |
| ): | |
| if requires_grad: | |
| prompt_embeds = encode_prompt( | |
| tokenizer, | |
| text_encoder, | |
| prompt, | |
| num_videos_per_prompt=1, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| else: | |
| with torch.no_grad(): | |
| prompt_embeds = encode_prompt( | |
| tokenizer, | |
| text_encoder, | |
| prompt, | |
| num_videos_per_prompt=1, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| return prompt_embeds | |
| def prepare_rotary_positional_embeddings( | |
| height: int, | |
| width: int, | |
| num_frames: int, | |
| vae_scale_factor_spatial: int = 8, | |
| patch_size: int = 2, | |
| attention_head_dim: int = 64, | |
| device: Optional[torch.device] = None, | |
| base_height: int = 480, | |
| base_width: int = 720, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| grid_height = height // (vae_scale_factor_spatial * patch_size) | |
| grid_width = width // (vae_scale_factor_spatial * patch_size) | |
| base_size_width = base_width // (vae_scale_factor_spatial * patch_size) | |
| base_size_height = base_height // (vae_scale_factor_spatial * patch_size) | |
| grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height) | |
| freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | |
| embed_dim=attention_head_dim, | |
| crops_coords=grid_crops_coords, | |
| grid_size=(grid_height, grid_width), | |
| temporal_size=num_frames, | |
| device=device, | |
| ) | |
| return freqs_cos, freqs_sin | |
| def get_optimizer(args, params_to_optimize, use_deepspeed: bool = False): | |
| # Use DeepSpeed optimizer | |
| if use_deepspeed: | |
| from accelerate.utils import DummyOptim | |
| return DummyOptim( | |
| params_to_optimize, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| eps=args.adam_epsilon, | |
| weight_decay=args.adam_weight_decay, | |
| ) | |
| # Optimizer creation | |
| supported_optimizers = ["adam", "adamw", "prodigy"] | |
| if args.optimizer not in supported_optimizers: | |
| logger.warning( | |
| f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include {supported_optimizers}. Defaulting to AdamW" | |
| ) | |
| args.optimizer = "adamw" | |
| if args.use_8bit_adam and args.optimizer.lower() not in ["adam", "adamw"]: | |
| logger.warning( | |
| f"use_8bit_adam is ignored when optimizer is not set to 'Adam' or 'AdamW'. Optimizer was " | |
| f"set to {args.optimizer.lower()}" | |
| ) | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| if args.optimizer.lower() == "adamw": | |
| optimizer_class = bnb.optim.AdamW8bit if args.use_8bit_adam else torch.optim.AdamW | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| eps=args.adam_epsilon, | |
| weight_decay=args.adam_weight_decay, | |
| ) | |
| elif args.optimizer.lower() == "adam": | |
| optimizer_class = bnb.optim.Adam8bit if args.use_8bit_adam else torch.optim.Adam | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| eps=args.adam_epsilon, | |
| weight_decay=args.adam_weight_decay, | |
| ) | |
| elif args.optimizer.lower() == "prodigy": | |
| try: | |
| import prodigyopt | |
| except ImportError: | |
| raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") | |
| optimizer_class = prodigyopt.Prodigy | |
| if args.learning_rate <= 0.1: | |
| logger.warning( | |
| "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" | |
| ) | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| beta3=args.prodigy_beta3, | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| decouple=args.prodigy_decouple, | |
| use_bias_correction=args.prodigy_use_bias_correction, | |
| safeguard_warmup=args.prodigy_safeguard_warmup, | |
| ) | |
| return optimizer | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
| # due to pytorch#99272, MPS does not yet support bfloat16. | |
| raise ValueError( | |
| "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
| ) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| kwargs_handlers=[kwargs], | |
| ) | |
| # Disable AMP for MPS. | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| if args.report_to == "wandb": | |
| if not is_wandb_available(): | |
| raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, | |
| exist_ok=True, | |
| ).repo_id | |
| # Prepare models and scheduler | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
| ) | |
| text_encoder = T5EncoderModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
| ) | |
| # CogVideoX-2b weights are stored in float16 | |
| # CogVideoX-5b and CogVideoX-5b-I2V weights are stored in bfloat16 | |
| load_dtype = torch.bfloat16 if "5b" in args.pretrained_model_name_or_path.lower() else torch.float16 | |
| transformer = CogVideoXTransformer3DModel.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="transformer", | |
| torch_dtype=load_dtype, | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| vae = AutoencoderKLCogVideoX.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant | |
| ) | |
| scheduler = CogVideoXDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| if args.enable_slicing: | |
| vae.enable_slicing() | |
| if args.enable_tiling: | |
| vae.enable_tiling() | |
| # We only train the additional adapter LoRA layers | |
| text_encoder.requires_grad_(False) | |
| transformer.requires_grad_(False) | |
| vae.requires_grad_(False) | |
| # For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision | |
| # as these weights are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.state.deepspeed_plugin: | |
| # DeepSpeed is handling precision, use what's in the DeepSpeed config | |
| if ( | |
| "fp16" in accelerator.state.deepspeed_plugin.deepspeed_config | |
| and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"] | |
| ): | |
| weight_dtype = torch.float16 | |
| if ( | |
| "bf16" in accelerator.state.deepspeed_plugin.deepspeed_config | |
| and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"] | |
| ): | |
| weight_dtype = torch.float16 | |
| else: | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: | |
| # due to pytorch#99272, MPS does not yet support bfloat16. | |
| raise ValueError( | |
| "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
| ) | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| transformer.to(accelerator.device, dtype=weight_dtype) | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| if args.gradient_checkpointing: | |
| transformer.enable_gradient_checkpointing() | |
| # now we will add new LoRA weights to the attention layers | |
| transformer_lora_config = LoraConfig( | |
| r=args.rank, | |
| lora_alpha=args.lora_alpha, | |
| init_lora_weights=True, | |
| target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
| ) | |
| transformer.add_adapter(transformer_lora_config) | |
| def unwrap_model(model): | |
| model = accelerator.unwrap_model(model) | |
| model = model._orig_mod if is_compiled_module(model) else model | |
| return model | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| transformer_lora_layers_to_save = None | |
| for model in models: | |
| if isinstance(model, type(unwrap_model(transformer))): | |
| transformer_lora_layers_to_save = get_peft_model_state_dict(model) | |
| else: | |
| raise ValueError(f"unexpected save model: {model.__class__}") | |
| # make sure to pop weight so that corresponding model is not saved again | |
| weights.pop() | |
| CogVideoXPipeline.save_lora_weights( | |
| output_dir, | |
| transformer_lora_layers=transformer_lora_layers_to_save, | |
| ) | |
| def load_model_hook(models, input_dir): | |
| transformer_ = None | |
| while len(models) > 0: | |
| model = models.pop() | |
| if isinstance(model, type(unwrap_model(transformer))): | |
| transformer_ = model | |
| else: | |
| raise ValueError(f"Unexpected save model: {model.__class__}") | |
| lora_state_dict = CogVideoXPipeline.lora_state_dict(input_dir) | |
| transformer_state_dict = { | |
| f"{k.replace('transformer.', '')}": v for k, v in lora_state_dict.items() if k.startswith("transformer.") | |
| } | |
| transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict) | |
| incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default") | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| if unexpected_keys: | |
| logger.warning( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| # Make sure the trainable params are in float32. This is again needed since the base models | |
| # are in `weight_dtype`. More details: | |
| # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804 | |
| if args.mixed_precision == "fp16": | |
| # only upcast trainable parameters (LoRA) into fp32 | |
| cast_training_params([transformer_]) | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32 and torch.cuda.is_available(): | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Make sure the trainable params are in float32. | |
| if args.mixed_precision == "fp16": | |
| # only upcast trainable parameters (LoRA) into fp32 | |
| cast_training_params([transformer], dtype=torch.float32) | |
| transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) | |
| # Optimization parameters | |
| transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate} | |
| params_to_optimize = [transformer_parameters_with_lr] | |
| use_deepspeed_optimizer = ( | |
| accelerator.state.deepspeed_plugin is not None | |
| and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config | |
| ) | |
| use_deepspeed_scheduler = ( | |
| accelerator.state.deepspeed_plugin is not None | |
| and "scheduler" in accelerator.state.deepspeed_plugin.deepspeed_config | |
| ) | |
| optimizer = get_optimizer(args, params_to_optimize, use_deepspeed=use_deepspeed_optimizer) | |
| # Dataset and DataLoader | |
| train_dataset = VideoDataset( | |
| instance_data_root=args.instance_data_root, | |
| dataset_name=args.dataset_name, | |
| dataset_config_name=args.dataset_config_name, | |
| caption_column=args.caption_column, | |
| video_column=args.video_column, | |
| height=args.height, | |
| width=args.width, | |
| video_reshape_mode=args.video_reshape_mode, | |
| fps=args.fps, | |
| max_num_frames=args.max_num_frames, | |
| skip_frames_start=args.skip_frames_start, | |
| skip_frames_end=args.skip_frames_end, | |
| cache_dir=args.cache_dir, | |
| id_token=args.id_token, | |
| ) | |
| def encode_video(video, bar): | |
| bar.update(1) | |
| video = video.to(accelerator.device, dtype=vae.dtype).unsqueeze(0) | |
| video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W] | |
| latent_dist = vae.encode(video).latent_dist | |
| return latent_dist | |
| progress_encode_bar = tqdm( | |
| range(0, len(train_dataset.instance_videos)), | |
| desc="Loading Encode videos", | |
| ) | |
| train_dataset.instance_videos = [ | |
| encode_video(video, progress_encode_bar) for video in train_dataset.instance_videos | |
| ] | |
| progress_encode_bar.close() | |
| def collate_fn(examples): | |
| videos = [example["instance_video"].sample() * vae.config.scaling_factor for example in examples] | |
| prompts = [example["instance_prompt"] for example in examples] | |
| videos = torch.cat(videos) | |
| videos = videos.permute(0, 2, 1, 3, 4) | |
| videos = videos.to(memory_format=torch.contiguous_format).float() | |
| return { | |
| "videos": videos, | |
| "prompts": prompts, | |
| } | |
| train_dataloader = DataLoader( | |
| train_dataset, | |
| batch_size=args.train_batch_size, | |
| shuffle=True, | |
| collate_fn=collate_fn, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| if use_deepspeed_scheduler: | |
| from accelerate.utils import DummyScheduler | |
| lr_scheduler = DummyScheduler( | |
| name=args.lr_scheduler, | |
| optimizer=optimizer, | |
| total_num_steps=args.max_train_steps * accelerator.num_processes, | |
| num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
| ) | |
| else: | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
| num_training_steps=args.max_train_steps * accelerator.num_processes, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| transformer, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_name = args.tracker_name or "cogvideox-lora" | |
| accelerator.init_trackers(tracker_name, config=vars(args)) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"]) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num trainable parameters = {num_trainable_parameters}") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if not args.resume_from_checkpoint: | |
| initial_global_step = 0 | |
| else: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the mos recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| vae_scale_factor_spatial = 2 ** (len(vae.config.block_out_channels) - 1) | |
| # For DeepSpeed training | |
| model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| transformer.train() | |
| for step, batch in enumerate(train_dataloader): | |
| models_to_accumulate = [transformer] | |
| with accelerator.accumulate(models_to_accumulate): | |
| model_input = batch["videos"].to(dtype=weight_dtype) # [B, F, C, H, W] | |
| prompts = batch["prompts"] | |
| # encode prompts | |
| prompt_embeds = compute_prompt_embeddings( | |
| tokenizer, | |
| text_encoder, | |
| prompts, | |
| model_config.max_text_seq_length, | |
| accelerator.device, | |
| weight_dtype, | |
| requires_grad=False, | |
| ) | |
| # Sample noise that will be added to the latents | |
| noise = torch.randn_like(model_input) | |
| batch_size, num_frames, num_channels, height, width = model_input.shape | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint( | |
| 0, scheduler.config.num_train_timesteps, (batch_size,), device=model_input.device | |
| ) | |
| timesteps = timesteps.long() | |
| # Prepare rotary embeds | |
| image_rotary_emb = ( | |
| prepare_rotary_positional_embeddings( | |
| height=args.height, | |
| width=args.width, | |
| num_frames=num_frames, | |
| vae_scale_factor_spatial=vae_scale_factor_spatial, | |
| patch_size=model_config.patch_size, | |
| attention_head_dim=model_config.attention_head_dim, | |
| device=accelerator.device, | |
| ) | |
| if model_config.use_rotary_positional_embeddings | |
| else None | |
| ) | |
| # Add noise to the model input according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_model_input = scheduler.add_noise(model_input, noise, timesteps) | |
| # Predict the noise residual | |
| model_output = transformer( | |
| hidden_states=noisy_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep=timesteps, | |
| image_rotary_emb=image_rotary_emb, | |
| return_dict=False, | |
| )[0] | |
| model_pred = scheduler.get_velocity(model_output, noisy_model_input, timesteps) | |
| alphas_cumprod = scheduler.alphas_cumprod[timesteps] | |
| weights = 1 / (1 - alphas_cumprod) | |
| while len(weights.shape) < len(model_pred.shape): | |
| weights = weights.unsqueeze(-1) | |
| target = model_input | |
| loss = torch.mean((weights * (model_pred - target) ** 2).reshape(batch_size, -1), dim=1) | |
| loss = loss.mean() | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| params_to_clip = transformer.parameters() | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| if accelerator.state.deepspeed_plugin is None: | |
| optimizer.step() | |
| optimizer.zero_grad() | |
| lr_scheduler.step() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"Removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| if accelerator.is_main_process: | |
| if args.validation_prompt is not None and (epoch + 1) % args.validation_epochs == 0: | |
| # Create pipeline | |
| pipe = CogVideoXPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| transformer=unwrap_model(transformer), | |
| text_encoder=unwrap_model(text_encoder), | |
| scheduler=scheduler, | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) | |
| for validation_prompt in validation_prompts: | |
| pipeline_args = { | |
| "prompt": validation_prompt, | |
| "guidance_scale": args.guidance_scale, | |
| "use_dynamic_cfg": args.use_dynamic_cfg, | |
| "height": args.height, | |
| "width": args.width, | |
| } | |
| validation_outputs = log_validation( | |
| pipe=pipe, | |
| args=args, | |
| accelerator=accelerator, | |
| pipeline_args=pipeline_args, | |
| epoch=epoch, | |
| ) | |
| # Save the lora layers | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| transformer = unwrap_model(transformer) | |
| dtype = ( | |
| torch.float16 | |
| if args.mixed_precision == "fp16" | |
| else torch.bfloat16 | |
| if args.mixed_precision == "bf16" | |
| else torch.float32 | |
| ) | |
| transformer = transformer.to(dtype) | |
| transformer_lora_layers = get_peft_model_state_dict(transformer) | |
| CogVideoXPipeline.save_lora_weights( | |
| save_directory=args.output_dir, | |
| transformer_lora_layers=transformer_lora_layers, | |
| ) | |
| # Cleanup trained models to save memory | |
| del transformer | |
| free_memory() | |
| # Final test inference | |
| pipe = CogVideoXPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config) | |
| if args.enable_slicing: | |
| pipe.vae.enable_slicing() | |
| if args.enable_tiling: | |
| pipe.vae.enable_tiling() | |
| # Load LoRA weights | |
| lora_scaling = args.lora_alpha / args.rank | |
| pipe.load_lora_weights(args.output_dir, adapter_name="cogvideox-lora") | |
| pipe.set_adapters(["cogvideox-lora"], [lora_scaling]) | |
| # Run inference | |
| validation_outputs = [] | |
| if args.validation_prompt and args.num_validation_videos > 0: | |
| validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) | |
| for validation_prompt in validation_prompts: | |
| pipeline_args = { | |
| "prompt": validation_prompt, | |
| "guidance_scale": args.guidance_scale, | |
| "use_dynamic_cfg": args.use_dynamic_cfg, | |
| "height": args.height, | |
| "width": args.width, | |
| } | |
| video = log_validation( | |
| pipe=pipe, | |
| args=args, | |
| accelerator=accelerator, | |
| pipeline_args=pipeline_args, | |
| epoch=epoch, | |
| is_final_validation=True, | |
| ) | |
| validation_outputs.extend(video) | |
| if args.push_to_hub: | |
| save_model_card( | |
| repo_id, | |
| videos=validation_outputs, | |
| base_model=args.pretrained_model_name_or_path, | |
| validation_prompt=args.validation_prompt, | |
| repo_folder=args.output_dir, | |
| fps=args.fps, | |
| ) | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = get_args() | |
| main(args) | |