Spaces:
Runtime error
Runtime error
| # Copyright 2025 The HuggingFace Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers import AutoencoderKLLTXVideo, LTXLatentUpsamplePipeline | |
| from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel | |
| from diffusers.utils.testing_utils import enable_full_determinism | |
| from ..test_pipelines_common import PipelineTesterMixin, to_np | |
| enable_full_determinism() | |
| class LTXLatentUpsamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = LTXLatentUpsamplePipeline | |
| params = {"video", "generator"} | |
| batch_params = {"video", "generator"} | |
| required_optional_params = frozenset(["generator", "latents", "return_dict"]) | |
| test_xformers_attention = False | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| vae = AutoencoderKLLTXVideo( | |
| in_channels=3, | |
| out_channels=3, | |
| latent_channels=8, | |
| block_out_channels=(8, 8, 8, 8), | |
| decoder_block_out_channels=(8, 8, 8, 8), | |
| layers_per_block=(1, 1, 1, 1, 1), | |
| decoder_layers_per_block=(1, 1, 1, 1, 1), | |
| spatio_temporal_scaling=(True, True, False, False), | |
| decoder_spatio_temporal_scaling=(True, True, False, False), | |
| decoder_inject_noise=(False, False, False, False, False), | |
| upsample_residual=(False, False, False, False), | |
| upsample_factor=(1, 1, 1, 1), | |
| timestep_conditioning=False, | |
| patch_size=1, | |
| patch_size_t=1, | |
| encoder_causal=True, | |
| decoder_causal=False, | |
| ) | |
| vae.use_framewise_encoding = False | |
| vae.use_framewise_decoding = False | |
| torch.manual_seed(0) | |
| latent_upsampler = LTXLatentUpsamplerModel( | |
| in_channels=8, | |
| mid_channels=32, | |
| num_blocks_per_stage=1, | |
| dims=3, | |
| spatial_upsample=True, | |
| temporal_upsample=False, | |
| ) | |
| components = { | |
| "vae": vae, | |
| "latent_upsampler": latent_upsampler, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| video = torch.randn((5, 3, 32, 32), generator=generator, device=device) | |
| inputs = { | |
| "video": video, | |
| "generator": generator, | |
| "height": 16, | |
| "width": 16, | |
| "output_type": "pt", | |
| } | |
| return inputs | |
| def test_inference(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| video = pipe(**inputs).frames | |
| generated_video = video[0] | |
| self.assertEqual(generated_video.shape, (5, 3, 32, 32)) | |
| expected_video = torch.randn(5, 3, 32, 32) | |
| max_diff = np.abs(generated_video - expected_video).max() | |
| self.assertLessEqual(max_diff, 1e10) | |
| def test_vae_tiling(self, expected_diff_max: float = 0.25): | |
| generator_device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to("cpu") | |
| pipe.set_progress_bar_config(disable=None) | |
| # Without tiling | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["height"] = inputs["width"] = 128 | |
| output_without_tiling = pipe(**inputs)[0] | |
| # With tiling | |
| pipe.vae.enable_tiling( | |
| tile_sample_min_height=96, | |
| tile_sample_min_width=96, | |
| tile_sample_stride_height=64, | |
| tile_sample_stride_width=64, | |
| ) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["height"] = inputs["width"] = 128 | |
| output_with_tiling = pipe(**inputs)[0] | |
| self.assertLess( | |
| (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
| expected_diff_max, | |
| "VAE tiling should not affect the inference results", | |
| ) | |
| def test_callback_inputs(self): | |
| pass | |
| def test_attention_slicing_forward_pass( | |
| self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
| ): | |
| pass | |
| def test_inference_batch_consistent(self): | |
| pass | |
| def test_inference_batch_single_identical(self): | |
| pass | |