Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import ( | |
| AutoTokenizer, | |
| CLIPTextConfig, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| LlamaForCausalLM, | |
| T5EncoderModel, | |
| ) | |
| from diffusers import ( | |
| AutoencoderKL, | |
| FlowMatchEulerDiscreteScheduler, | |
| HiDreamImagePipeline, | |
| HiDreamImageTransformer2DModel, | |
| ) | |
| from diffusers.utils.testing_utils import enable_full_determinism | |
| from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = HiDreamImagePipeline | |
| params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "prompt_embeds", "negative_prompt_embeds"} | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| required_optional_params = PipelineTesterMixin.required_optional_params | |
| test_layerwise_casting = True | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = HiDreamImageTransformer2DModel( | |
| patch_size=2, | |
| in_channels=4, | |
| out_channels=4, | |
| num_layers=1, | |
| num_single_layers=1, | |
| attention_head_dim=8, | |
| num_attention_heads=4, | |
| caption_channels=[32, 16], | |
| text_emb_dim=64, | |
| num_routed_experts=4, | |
| num_activated_experts=2, | |
| axes_dims_rope=(4, 2, 2), | |
| max_resolution=(32, 32), | |
| llama_layers=(0, 1), | |
| ).eval() | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL(scaling_factor=0.3611, shift_factor=0.1159) | |
| clip_text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| max_position_embeddings=128, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| torch.manual_seed(0) | |
| text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") | |
| text_encoder_4.generation_config.pad_token_id = 1 | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer_4 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| components = { | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| "text_encoder_3": text_encoder_3, | |
| "tokenizer_3": tokenizer_3, | |
| "text_encoder_4": text_encoder_4, | |
| "tokenizer_4": tokenizer_4, | |
| "transformer": transformer, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_inference(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs)[0] | |
| generated_image = image[0] | |
| self.assertEqual(generated_image.shape, (128, 128, 3)) | |
| expected_image = torch.randn(128, 128, 3).numpy() | |
| max_diff = np.abs(generated_image - expected_image).max() | |
| self.assertLessEqual(max_diff, 1e10) | |
| def test_inference_batch_single_identical(self): | |
| super().test_inference_batch_single_identical(expected_max_diff=3e-4) | |