Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline | |
# Sentiment Analysis Pipeline | |
pipe = pipeline('sentiment-analysis') | |
# Toxicity Classifier | |
model_path = "citizenlab/distilbert-base-multilingual-cased-toxicity" | |
toxicity_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path) | |
st.title("Plataforma de Diálogos Participativos") | |
# Text area for input | |
text = st.text_area("Añade el texto a evaluar") | |
# Create columns for buttons | |
col1, col2 = st.columns(2) | |
# Place each button in a separate column to make them appear on the same row | |
run_sentiment_analysis = col1.button("Evaluar Sentimiento") | |
run_toxicity_analysis = col2.button("Evaluar Toxicidad") | |
# Container for output | |
output_container = st.container() | |
# Check if the sentiment analysis button has been pressed and if there's text in the text area | |
if run_sentiment_analysis and text: | |
with output_container: | |
sentiment_output = pipe(text) | |
st.write("Resultado del análisis de sentimiento:") | |
st.json(sentiment_output) | |
elif run_sentiment_analysis and not text: | |
st.warning("Por favor, añade un texto para evaluar el sentimiento.") | |
# Check if the toxicity analysis button has been pressed and if there's text in the text area | |
if run_toxicity_analysis and text: | |
with output_container: | |
toxicity_output = toxicity_classifier(text) | |
st.write("Resultado del análisis de toxicidad:") | |
st.json(toxicity_output) | |
elif run_toxicity_analysis and not text: | |
st.warning("Por favor, añade un texto para evaluar la toxicidad.") | |