Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
9c5c692
1
Parent(s):
183ec61
update collection format
Browse files- README.md +26 -0
- model_list.txt +26 -0
- src/display/utils.py +3 -3
- src/tools/collections.py +97 -26
README.md
CHANGED
|
@@ -79,8 +79,13 @@ models:
|
|
| 79 |
- JJhooww/Mistral-7B-v0.2-Base_ptbr
|
| 80 |
- JJhooww/MistralReloadBR_v2_ptbr
|
| 81 |
- JJhooww/Mistral_Relora_Step2k
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
- MagusCorp/legislinho
|
| 83 |
- MaziyarPanahi/Mistral-7B-Instruct-Aya-101
|
|
|
|
| 84 |
- NOVA-vision-language/GlorIA-1.3B
|
| 85 |
- Nexusflow/Starling-LM-7B-beta
|
| 86 |
- NousResearch/Nous-Hermes-13b
|
|
@@ -130,6 +135,7 @@ models:
|
|
| 130 |
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
| 131 |
- Unbabel/TowerBase-7B-v0.1
|
| 132 |
- Walmart-the-bag/Misted-v2-7B
|
|
|
|
| 133 |
- Walmart-the-bag/WordWoven-2x7B
|
| 134 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
| 135 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
|
|
@@ -143,6 +149,9 @@ models:
|
|
| 143 |
- Weni/ZeroShot-Multilanguage-Zephyr-7B
|
| 144 |
- abacusai/Smaug-34B-v0.1
|
| 145 |
- abacusai/Smaug-72B-v0.1
|
|
|
|
|
|
|
|
|
|
| 146 |
- allenai/OLMo-1B
|
| 147 |
- allenai/OLMo-7B
|
| 148 |
- allenai/OLMo-7B-Twin-2T
|
|
@@ -160,7 +169,9 @@ models:
|
|
| 160 |
- bigscience/bloom-3b
|
| 161 |
- bigscience/bloom-560m
|
| 162 |
- bigscience/bloom-7b1
|
|
|
|
| 163 |
- cnmoro/Mistral-7B-Portuguese
|
|
|
|
| 164 |
- croissantllm/CroissantLLMBase
|
| 165 |
- deepseek-ai/deepseek-llm-7b-base
|
| 166 |
- deepseek-ai/deepseek-moe-16b-base
|
|
@@ -171,6 +182,7 @@ models:
|
|
| 171 |
- dynamofl/dynamo-8B-v0.1
|
| 172 |
- eduagarcia/gemma-7b-it_no_chat_template
|
| 173 |
- eduagarcia/gemma-7b-it_singleturn_chat_template
|
|
|
|
| 174 |
- facebook/opt-1.3b
|
| 175 |
- facebook/opt-125m
|
| 176 |
- facebook/opt-13b
|
|
@@ -206,8 +218,11 @@ models:
|
|
| 206 |
- internlm/internlm2-base-20b
|
| 207 |
- internlm/internlm2-base-7b
|
| 208 |
- internlm/internlm2-chat-1_8b
|
|
|
|
| 209 |
- internlm/internlm2-chat-20b
|
|
|
|
| 210 |
- internlm/internlm2-chat-7b
|
|
|
|
| 211 |
- josu/gpt-neo-pt-1.3B
|
| 212 |
- josu/gpt-neo-pt-br
|
| 213 |
- lmsys/vicuna-13b-v1.5
|
|
@@ -215,6 +230,7 @@ models:
|
|
| 215 |
- lrds-code/boana-7b-instruct
|
| 216 |
- lrds-code/samba-1.1B
|
| 217 |
- lucianosb/boto-7B
|
|
|
|
| 218 |
- maritaca-ai/sabia-7b
|
| 219 |
- matsuo-lab/weblab-10b
|
| 220 |
- meta-llama/Llama-2-13b-chat-hf
|
|
@@ -229,6 +245,7 @@ models:
|
|
| 229 |
- microsoft/phi-1_5
|
| 230 |
- microsoft/phi-2
|
| 231 |
- mistral-community/Mistral-7B-v0.2
|
|
|
|
| 232 |
- mistral-community/Mixtral-8x22B-v0.1-4bit
|
| 233 |
- mistralai/Mistral-7B-Instruct-v0.2
|
| 234 |
- mistralai/Mistral-7B-v0.1
|
|
@@ -271,11 +288,19 @@ models:
|
|
| 271 |
- recogna-nlp/Phi-Bode
|
| 272 |
- recogna-nlp/bode-13b-alpaca-pt-br
|
| 273 |
- recogna-nlp/bode-7b-alpaca-pt-br
|
|
|
|
|
|
|
| 274 |
- recogna-nlp/gembode-2b-ultraalpaca
|
|
|
|
| 275 |
- recogna-nlp/internlmbode-7b
|
| 276 |
- recogna-nlp/mistral-bode
|
|
|
|
| 277 |
- recogna-nlp/phi-bode-2-ultraalpaca
|
|
|
|
|
|
|
|
|
|
| 278 |
- rhaymison/Llama-portuguese-13b-Luana-v0.2
|
|
|
|
| 279 |
- rhaymison/Mistral-portuguese-luana-7b
|
| 280 |
- rhaymison/Mistral-portuguese-luana-7b-Mathematics
|
| 281 |
- rhaymison/Mistral-portuguese-luana-7b-chat
|
|
@@ -311,6 +336,7 @@ models:
|
|
| 311 |
- tiiuae/falcon-7b
|
| 312 |
- togethercomputer/RedPajama-INCITE-7B-Base
|
| 313 |
- togethercomputer/RedPajama-INCITE-Base-3B-v1
|
|
|
|
| 314 |
- upstage/SOLAR-10.7B-Instruct-v1.0
|
| 315 |
- upstage/SOLAR-10.7B-v1.0
|
| 316 |
- wandgibaut/periquito-3B
|
|
|
|
| 79 |
- JJhooww/Mistral-7B-v0.2-Base_ptbr
|
| 80 |
- JJhooww/MistralReloadBR_v2_ptbr
|
| 81 |
- JJhooww/Mistral_Relora_Step2k
|
| 82 |
+
- JosephusCheung/LL7M
|
| 83 |
+
- M4-ai/tau-0.5B
|
| 84 |
+
- M4-ai/tau-0.5B-instruct-DPOP
|
| 85 |
+
- M4-ai/tau-1.8B
|
| 86 |
- MagusCorp/legislinho
|
| 87 |
- MaziyarPanahi/Mistral-7B-Instruct-Aya-101
|
| 88 |
+
- MulaBR/Mula-4x160-v0.1
|
| 89 |
- NOVA-vision-language/GlorIA-1.3B
|
| 90 |
- Nexusflow/Starling-LM-7B-beta
|
| 91 |
- NousResearch/Nous-Hermes-13b
|
|
|
|
| 135 |
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
| 136 |
- Unbabel/TowerBase-7B-v0.1
|
| 137 |
- Walmart-the-bag/Misted-v2-7B
|
| 138 |
+
- Walmart-the-bag/Quintellect-10.7B
|
| 139 |
- Walmart-the-bag/WordWoven-2x7B
|
| 140 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
| 141 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
|
|
|
|
| 149 |
- Weni/ZeroShot-Multilanguage-Zephyr-7B
|
| 150 |
- abacusai/Smaug-34B-v0.1
|
| 151 |
- abacusai/Smaug-72B-v0.1
|
| 152 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.1
|
| 153 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2
|
| 154 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2-fft
|
| 155 |
- allenai/OLMo-1B
|
| 156 |
- allenai/OLMo-7B
|
| 157 |
- allenai/OLMo-7B-Twin-2T
|
|
|
|
| 169 |
- bigscience/bloom-3b
|
| 170 |
- bigscience/bloom-560m
|
| 171 |
- bigscience/bloom-7b1
|
| 172 |
+
- botbot-ai/CabraLlama3-8b
|
| 173 |
- cnmoro/Mistral-7B-Portuguese
|
| 174 |
+
- cognitivecomputations/dolphin-2.9-llama3-8b
|
| 175 |
- croissantllm/CroissantLLMBase
|
| 176 |
- deepseek-ai/deepseek-llm-7b-base
|
| 177 |
- deepseek-ai/deepseek-moe-16b-base
|
|
|
|
| 182 |
- dynamofl/dynamo-8B-v0.1
|
| 183 |
- eduagarcia/gemma-7b-it_no_chat_template
|
| 184 |
- eduagarcia/gemma-7b-it_singleturn_chat_template
|
| 185 |
+
- ericzzz/falcon-rw-1b-instruct-openorca
|
| 186 |
- facebook/opt-1.3b
|
| 187 |
- facebook/opt-125m
|
| 188 |
- facebook/opt-13b
|
|
|
|
| 218 |
- internlm/internlm2-base-20b
|
| 219 |
- internlm/internlm2-base-7b
|
| 220 |
- internlm/internlm2-chat-1_8b
|
| 221 |
+
- internlm/internlm2-chat-1_8b-sft
|
| 222 |
- internlm/internlm2-chat-20b
|
| 223 |
+
- internlm/internlm2-chat-20b-sft
|
| 224 |
- internlm/internlm2-chat-7b
|
| 225 |
+
- internlm/internlm2-chat-7b-sft
|
| 226 |
- josu/gpt-neo-pt-1.3B
|
| 227 |
- josu/gpt-neo-pt-br
|
| 228 |
- lmsys/vicuna-13b-v1.5
|
|
|
|
| 230 |
- lrds-code/boana-7b-instruct
|
| 231 |
- lrds-code/samba-1.1B
|
| 232 |
- lucianosb/boto-7B
|
| 233 |
+
- lucianosb/boto-7B-v1.1
|
| 234 |
- maritaca-ai/sabia-7b
|
| 235 |
- matsuo-lab/weblab-10b
|
| 236 |
- meta-llama/Llama-2-13b-chat-hf
|
|
|
|
| 245 |
- microsoft/phi-1_5
|
| 246 |
- microsoft/phi-2
|
| 247 |
- mistral-community/Mistral-7B-v0.2
|
| 248 |
+
- mistral-community/Mixtral-8x22B-Instruct-v0.1-4bit
|
| 249 |
- mistral-community/Mixtral-8x22B-v0.1-4bit
|
| 250 |
- mistralai/Mistral-7B-Instruct-v0.2
|
| 251 |
- mistralai/Mistral-7B-v0.1
|
|
|
|
| 288 |
- recogna-nlp/Phi-Bode
|
| 289 |
- recogna-nlp/bode-13b-alpaca-pt-br
|
| 290 |
- recogna-nlp/bode-7b-alpaca-pt-br
|
| 291 |
+
- recogna-nlp/gembode-2b-base-ultraalpaca
|
| 292 |
+
- recogna-nlp/gembode-2b-base-ultraalpaca-qlora
|
| 293 |
- recogna-nlp/gembode-2b-ultraalpaca
|
| 294 |
+
- recogna-nlp/gembode-2b-ultraalpaca-qlora
|
| 295 |
- recogna-nlp/internlmbode-7b
|
| 296 |
- recogna-nlp/mistral-bode
|
| 297 |
+
- recogna-nlp/mistralbode_7b_qlora_ultraalpaca
|
| 298 |
- recogna-nlp/phi-bode-2-ultraalpaca
|
| 299 |
+
- recogna-nlp/qwenbode_1_8b_chat_ultraalpaca
|
| 300 |
+
- recogna-nlp/qwenbode_1_8b_chat_ultraalpaca_qlora
|
| 301 |
+
- recogna-nlp/zephyr_7b_beta_ultraalpaca
|
| 302 |
- rhaymison/Llama-portuguese-13b-Luana-v0.2
|
| 303 |
+
- rhaymison/Mistral-8x7b-portuguese-luana
|
| 304 |
- rhaymison/Mistral-portuguese-luana-7b
|
| 305 |
- rhaymison/Mistral-portuguese-luana-7b-Mathematics
|
| 306 |
- rhaymison/Mistral-portuguese-luana-7b-chat
|
|
|
|
| 336 |
- tiiuae/falcon-7b
|
| 337 |
- togethercomputer/RedPajama-INCITE-7B-Base
|
| 338 |
- togethercomputer/RedPajama-INCITE-Base-3B-v1
|
| 339 |
+
- unsloth/mistral-7b-bnb-4bit
|
| 340 |
- upstage/SOLAR-10.7B-Instruct-v1.0
|
| 341 |
- upstage/SOLAR-10.7B-v1.0
|
| 342 |
- wandgibaut/periquito-3B
|
model_list.txt
CHANGED
|
@@ -50,8 +50,13 @@
|
|
| 50 |
- JJhooww/Mistral-7B-v0.2-Base_ptbr
|
| 51 |
- JJhooww/MistralReloadBR_v2_ptbr
|
| 52 |
- JJhooww/Mistral_Relora_Step2k
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
- MagusCorp/legislinho
|
| 54 |
- MaziyarPanahi/Mistral-7B-Instruct-Aya-101
|
|
|
|
| 55 |
- NOVA-vision-language/GlorIA-1.3B
|
| 56 |
- Nexusflow/Starling-LM-7B-beta
|
| 57 |
- NousResearch/Nous-Hermes-13b
|
|
@@ -101,6 +106,7 @@
|
|
| 101 |
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
| 102 |
- Unbabel/TowerBase-7B-v0.1
|
| 103 |
- Walmart-the-bag/Misted-v2-7B
|
|
|
|
| 104 |
- Walmart-the-bag/WordWoven-2x7B
|
| 105 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
| 106 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
|
|
@@ -114,6 +120,9 @@
|
|
| 114 |
- Weni/ZeroShot-Multilanguage-Zephyr-7B
|
| 115 |
- abacusai/Smaug-34B-v0.1
|
| 116 |
- abacusai/Smaug-72B-v0.1
|
|
|
|
|
|
|
|
|
|
| 117 |
- allenai/OLMo-1B
|
| 118 |
- allenai/OLMo-7B
|
| 119 |
- allenai/OLMo-7B-Twin-2T
|
|
@@ -131,7 +140,9 @@
|
|
| 131 |
- bigscience/bloom-3b
|
| 132 |
- bigscience/bloom-560m
|
| 133 |
- bigscience/bloom-7b1
|
|
|
|
| 134 |
- cnmoro/Mistral-7B-Portuguese
|
|
|
|
| 135 |
- croissantllm/CroissantLLMBase
|
| 136 |
- deepseek-ai/deepseek-llm-7b-base
|
| 137 |
- deepseek-ai/deepseek-moe-16b-base
|
|
@@ -142,6 +153,7 @@
|
|
| 142 |
- dynamofl/dynamo-8B-v0.1
|
| 143 |
- eduagarcia/gemma-7b-it_no_chat_template
|
| 144 |
- eduagarcia/gemma-7b-it_singleturn_chat_template
|
|
|
|
| 145 |
- facebook/opt-1.3b
|
| 146 |
- facebook/opt-125m
|
| 147 |
- facebook/opt-13b
|
|
@@ -177,8 +189,11 @@
|
|
| 177 |
- internlm/internlm2-base-20b
|
| 178 |
- internlm/internlm2-base-7b
|
| 179 |
- internlm/internlm2-chat-1_8b
|
|
|
|
| 180 |
- internlm/internlm2-chat-20b
|
|
|
|
| 181 |
- internlm/internlm2-chat-7b
|
|
|
|
| 182 |
- josu/gpt-neo-pt-1.3B
|
| 183 |
- josu/gpt-neo-pt-br
|
| 184 |
- lmsys/vicuna-13b-v1.5
|
|
@@ -186,6 +201,7 @@
|
|
| 186 |
- lrds-code/boana-7b-instruct
|
| 187 |
- lrds-code/samba-1.1B
|
| 188 |
- lucianosb/boto-7B
|
|
|
|
| 189 |
- maritaca-ai/sabia-7b
|
| 190 |
- matsuo-lab/weblab-10b
|
| 191 |
- meta-llama/Llama-2-13b-chat-hf
|
|
@@ -200,6 +216,7 @@
|
|
| 200 |
- microsoft/phi-1_5
|
| 201 |
- microsoft/phi-2
|
| 202 |
- mistral-community/Mistral-7B-v0.2
|
|
|
|
| 203 |
- mistral-community/Mixtral-8x22B-v0.1-4bit
|
| 204 |
- mistralai/Mistral-7B-Instruct-v0.2
|
| 205 |
- mistralai/Mistral-7B-v0.1
|
|
@@ -242,11 +259,19 @@
|
|
| 242 |
- recogna-nlp/Phi-Bode
|
| 243 |
- recogna-nlp/bode-13b-alpaca-pt-br
|
| 244 |
- recogna-nlp/bode-7b-alpaca-pt-br
|
|
|
|
|
|
|
| 245 |
- recogna-nlp/gembode-2b-ultraalpaca
|
|
|
|
| 246 |
- recogna-nlp/internlmbode-7b
|
| 247 |
- recogna-nlp/mistral-bode
|
|
|
|
| 248 |
- recogna-nlp/phi-bode-2-ultraalpaca
|
|
|
|
|
|
|
|
|
|
| 249 |
- rhaymison/Llama-portuguese-13b-Luana-v0.2
|
|
|
|
| 250 |
- rhaymison/Mistral-portuguese-luana-7b
|
| 251 |
- rhaymison/Mistral-portuguese-luana-7b-Mathematics
|
| 252 |
- rhaymison/Mistral-portuguese-luana-7b-chat
|
|
@@ -282,6 +307,7 @@
|
|
| 282 |
- tiiuae/falcon-7b
|
| 283 |
- togethercomputer/RedPajama-INCITE-7B-Base
|
| 284 |
- togethercomputer/RedPajama-INCITE-Base-3B-v1
|
|
|
|
| 285 |
- upstage/SOLAR-10.7B-Instruct-v1.0
|
| 286 |
- upstage/SOLAR-10.7B-v1.0
|
| 287 |
- wandgibaut/periquito-3B
|
|
|
|
| 50 |
- JJhooww/Mistral-7B-v0.2-Base_ptbr
|
| 51 |
- JJhooww/MistralReloadBR_v2_ptbr
|
| 52 |
- JJhooww/Mistral_Relora_Step2k
|
| 53 |
+
- JosephusCheung/LL7M
|
| 54 |
+
- M4-ai/tau-0.5B
|
| 55 |
+
- M4-ai/tau-0.5B-instruct-DPOP
|
| 56 |
+
- M4-ai/tau-1.8B
|
| 57 |
- MagusCorp/legislinho
|
| 58 |
- MaziyarPanahi/Mistral-7B-Instruct-Aya-101
|
| 59 |
+
- MulaBR/Mula-4x160-v0.1
|
| 60 |
- NOVA-vision-language/GlorIA-1.3B
|
| 61 |
- Nexusflow/Starling-LM-7B-beta
|
| 62 |
- NousResearch/Nous-Hermes-13b
|
|
|
|
| 106 |
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
| 107 |
- Unbabel/TowerBase-7B-v0.1
|
| 108 |
- Walmart-the-bag/Misted-v2-7B
|
| 109 |
+
- Walmart-the-bag/Quintellect-10.7B
|
| 110 |
- Walmart-the-bag/WordWoven-2x7B
|
| 111 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
| 112 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
|
|
|
|
| 120 |
- Weni/ZeroShot-Multilanguage-Zephyr-7B
|
| 121 |
- abacusai/Smaug-34B-v0.1
|
| 122 |
- abacusai/Smaug-72B-v0.1
|
| 123 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.1
|
| 124 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2
|
| 125 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2-fft
|
| 126 |
- allenai/OLMo-1B
|
| 127 |
- allenai/OLMo-7B
|
| 128 |
- allenai/OLMo-7B-Twin-2T
|
|
|
|
| 140 |
- bigscience/bloom-3b
|
| 141 |
- bigscience/bloom-560m
|
| 142 |
- bigscience/bloom-7b1
|
| 143 |
+
- botbot-ai/CabraLlama3-8b
|
| 144 |
- cnmoro/Mistral-7B-Portuguese
|
| 145 |
+
- cognitivecomputations/dolphin-2.9-llama3-8b
|
| 146 |
- croissantllm/CroissantLLMBase
|
| 147 |
- deepseek-ai/deepseek-llm-7b-base
|
| 148 |
- deepseek-ai/deepseek-moe-16b-base
|
|
|
|
| 153 |
- dynamofl/dynamo-8B-v0.1
|
| 154 |
- eduagarcia/gemma-7b-it_no_chat_template
|
| 155 |
- eduagarcia/gemma-7b-it_singleturn_chat_template
|
| 156 |
+
- ericzzz/falcon-rw-1b-instruct-openorca
|
| 157 |
- facebook/opt-1.3b
|
| 158 |
- facebook/opt-125m
|
| 159 |
- facebook/opt-13b
|
|
|
|
| 189 |
- internlm/internlm2-base-20b
|
| 190 |
- internlm/internlm2-base-7b
|
| 191 |
- internlm/internlm2-chat-1_8b
|
| 192 |
+
- internlm/internlm2-chat-1_8b-sft
|
| 193 |
- internlm/internlm2-chat-20b
|
| 194 |
+
- internlm/internlm2-chat-20b-sft
|
| 195 |
- internlm/internlm2-chat-7b
|
| 196 |
+
- internlm/internlm2-chat-7b-sft
|
| 197 |
- josu/gpt-neo-pt-1.3B
|
| 198 |
- josu/gpt-neo-pt-br
|
| 199 |
- lmsys/vicuna-13b-v1.5
|
|
|
|
| 201 |
- lrds-code/boana-7b-instruct
|
| 202 |
- lrds-code/samba-1.1B
|
| 203 |
- lucianosb/boto-7B
|
| 204 |
+
- lucianosb/boto-7B-v1.1
|
| 205 |
- maritaca-ai/sabia-7b
|
| 206 |
- matsuo-lab/weblab-10b
|
| 207 |
- meta-llama/Llama-2-13b-chat-hf
|
|
|
|
| 216 |
- microsoft/phi-1_5
|
| 217 |
- microsoft/phi-2
|
| 218 |
- mistral-community/Mistral-7B-v0.2
|
| 219 |
+
- mistral-community/Mixtral-8x22B-Instruct-v0.1-4bit
|
| 220 |
- mistral-community/Mixtral-8x22B-v0.1-4bit
|
| 221 |
- mistralai/Mistral-7B-Instruct-v0.2
|
| 222 |
- mistralai/Mistral-7B-v0.1
|
|
|
|
| 259 |
- recogna-nlp/Phi-Bode
|
| 260 |
- recogna-nlp/bode-13b-alpaca-pt-br
|
| 261 |
- recogna-nlp/bode-7b-alpaca-pt-br
|
| 262 |
+
- recogna-nlp/gembode-2b-base-ultraalpaca
|
| 263 |
+
- recogna-nlp/gembode-2b-base-ultraalpaca-qlora
|
| 264 |
- recogna-nlp/gembode-2b-ultraalpaca
|
| 265 |
+
- recogna-nlp/gembode-2b-ultraalpaca-qlora
|
| 266 |
- recogna-nlp/internlmbode-7b
|
| 267 |
- recogna-nlp/mistral-bode
|
| 268 |
+
- recogna-nlp/mistralbode_7b_qlora_ultraalpaca
|
| 269 |
- recogna-nlp/phi-bode-2-ultraalpaca
|
| 270 |
+
- recogna-nlp/qwenbode_1_8b_chat_ultraalpaca
|
| 271 |
+
- recogna-nlp/qwenbode_1_8b_chat_ultraalpaca_qlora
|
| 272 |
+
- recogna-nlp/zephyr_7b_beta_ultraalpaca
|
| 273 |
- rhaymison/Llama-portuguese-13b-Luana-v0.2
|
| 274 |
+
- rhaymison/Mistral-8x7b-portuguese-luana
|
| 275 |
- rhaymison/Mistral-portuguese-luana-7b
|
| 276 |
- rhaymison/Mistral-portuguese-luana-7b-Mathematics
|
| 277 |
- rhaymison/Mistral-portuguese-luana-7b-chat
|
|
|
|
| 307 |
- tiiuae/falcon-7b
|
| 308 |
- togethercomputer/RedPajama-INCITE-7B-Base
|
| 309 |
- togethercomputer/RedPajama-INCITE-Base-3B-v1
|
| 310 |
+
- unsloth/mistral-7b-bnb-4bit
|
| 311 |
- upstage/SOLAR-10.7B-Instruct-v1.0
|
| 312 |
- upstage/SOLAR-10.7B-v1.0
|
| 313 |
- wandgibaut/periquito-3B
|
src/display/utils.py
CHANGED
|
@@ -193,11 +193,11 @@ class ModelDetails:
|
|
| 193 |
|
| 194 |
class ModelType(Enum):
|
| 195 |
PT = ModelDetails(name="pretrained", symbol="🟢")
|
| 196 |
-
LA = ModelDetails(name="language adapted
|
| 197 |
FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="🔶")
|
| 198 |
-
chat = ModelDetails(name="chat
|
| 199 |
merges = ModelDetails(name="base merges and moerges", symbol="🤝")
|
| 200 |
-
proprietary = ModelDetails(name="proprietary
|
| 201 |
Unknown = ModelDetails(name="", symbol="?")
|
| 202 |
|
| 203 |
def to_str(self, separator=" "):
|
|
|
|
| 193 |
|
| 194 |
class ModelType(Enum):
|
| 195 |
PT = ModelDetails(name="pretrained", symbol="🟢")
|
| 196 |
+
LA = ModelDetails(name="language adapted (FP, FT, ...)", symbol="🆎")
|
| 197 |
FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="🔶")
|
| 198 |
+
chat = ModelDetails(name="chat (RLHF, DPO, IFT, ...)", symbol="💬")
|
| 199 |
merges = ModelDetails(name="base merges and moerges", symbol="🤝")
|
| 200 |
+
proprietary = ModelDetails(name="proprietary (closed)", symbol="🔒")
|
| 201 |
Unknown = ModelDetails(name="", symbol="?")
|
| 202 |
|
| 203 |
def to_str(self, separator=" "):
|
src/tools/collections.py
CHANGED
|
@@ -4,6 +4,7 @@ import pandas as pd
|
|
| 4 |
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
|
| 5 |
from huggingface_hub.utils._errors import HfHubHTTPError
|
| 6 |
from pandas import DataFrame
|
|
|
|
| 7 |
|
| 8 |
from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS
|
| 9 |
from src.envs import H4_TOKEN, PATH_TO_COLLECTION
|
|
@@ -29,50 +30,120 @@ def update_collections(df: DataFrame):
|
|
| 29 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 30 |
|
| 31 |
cur_best_models = []
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
continue
|
| 37 |
-
for size in intervals:
|
| 38 |
-
# We filter the df to gather the relevant models
|
| 39 |
-
type_emoji = [t[0] for t in type.value.symbol]
|
| 40 |
-
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
print(type.value.symbol, size, best_models[:10])
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# We add them one by one to the leaderboard
|
| 52 |
-
for
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
try:
|
| 56 |
collection = add_collection_item(
|
| 57 |
PATH_TO_COLLECTION,
|
| 58 |
item_id=model,
|
| 59 |
item_type="model",
|
| 60 |
exists_ok=True,
|
| 61 |
-
note=
|
| 62 |
token=H4_TOKEN,
|
| 63 |
)
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
): # we added an item - we make sure its position is correct
|
| 67 |
-
item_object_id = collection.items[-1].item_object_id
|
| 68 |
-
update_collection_item(
|
| 69 |
-
collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
|
| 70 |
-
)
|
| 71 |
-
cur_len_collection = len(collection.items)
|
| 72 |
cur_best_models.append(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
break
|
| 74 |
except HfHubHTTPError:
|
| 75 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
| 78 |
for item in collection.items:
|
|
|
|
| 4 |
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
|
| 5 |
from huggingface_hub.utils._errors import HfHubHTTPError
|
| 6 |
from pandas import DataFrame
|
| 7 |
+
import numpy as np
|
| 8 |
|
| 9 |
from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS
|
| 10 |
from src.envs import H4_TOKEN, PATH_TO_COLLECTION
|
|
|
|
| 30 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 31 |
|
| 32 |
cur_best_models = []
|
| 33 |
+
cur_best_scores = []
|
| 34 |
+
scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
|
| 35 |
|
| 36 |
+
types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
|
| 37 |
+
|
| 38 |
+
for item in collection.items:
|
| 39 |
+
try:
|
| 40 |
+
delete_collection_item(
|
| 41 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
| 42 |
+
)
|
| 43 |
+
except HfHubHTTPError:
|
| 44 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
ix = 0
|
| 47 |
+
for size in intervals:
|
| 48 |
+
interval_scores = []
|
| 49 |
+
interval_itens_languages = []
|
| 50 |
+
interval_itens = []
|
| 51 |
|
| 52 |
+
numeric_interval = pd.IntervalIndex([intervals[size]])
|
| 53 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 54 |
+
size_df = df.loc[mask]
|
|
|
|
| 55 |
|
| 56 |
+
for model_type, types in types_to_consider:
|
| 57 |
+
type_emojis = []
|
| 58 |
+
for type in types:
|
| 59 |
+
if type.value.name == "":
|
| 60 |
+
continue
|
| 61 |
+
type_emoji = [t[0] for t in type.value.symbol]
|
| 62 |
+
type_emojis.extend(type_emoji)
|
| 63 |
+
filtered_df = size_df[size_df[AutoEvalColumn.model_type_symbol.name].isin(type_emojis)]
|
| 64 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]]
|
| 65 |
+
|
| 66 |
+
best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)
|
| 67 |
+
print(type_emojis, size, list(best_models[AutoEvalColumn.dummy.name])[:10])
|
| 68 |
# We add them one by one to the leaderboard
|
| 69 |
+
for i, row in best_models.iterrows():
|
| 70 |
+
model = row[AutoEvalColumn.dummy.name]
|
| 71 |
+
score = row[AutoEvalColumn.average.name]
|
| 72 |
+
language = row[AutoEvalColumn.main_language.name]
|
| 73 |
+
if language == 'Portuguese':
|
| 74 |
+
note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
|
| 75 |
+
else:
|
| 76 |
+
note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
|
| 77 |
try:
|
| 78 |
collection = add_collection_item(
|
| 79 |
PATH_TO_COLLECTION,
|
| 80 |
item_id=model,
|
| 81 |
item_type="model",
|
| 82 |
exists_ok=True,
|
| 83 |
+
note=note,
|
| 84 |
token=H4_TOKEN,
|
| 85 |
)
|
| 86 |
+
ix += 1
|
| 87 |
+
item_object_id = collection.items[-1].item_object_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
cur_best_models.append(model)
|
| 89 |
+
interval_scores.append(float(score))
|
| 90 |
+
interval_itens_languages.append(language)
|
| 91 |
+
interval_itens.append(item_object_id)
|
| 92 |
+
scores_per_type[model_type] = float(score)
|
| 93 |
break
|
| 94 |
except HfHubHTTPError:
|
| 95 |
continue
|
| 96 |
+
if 'Portuguese' not in interval_itens_languages:
|
| 97 |
+
language = ['Portuguese']
|
| 98 |
+
model_type = 'language'
|
| 99 |
+
filtered_df = size_df[size_df[AutoEvalColumn.main_language.name].isin(language)]
|
| 100 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]]
|
| 101 |
+
|
| 102 |
+
best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)
|
| 103 |
+
print(language, size, list(best_models[AutoEvalColumn.dummy.name])[:10])
|
| 104 |
+
# We add them one by one to the leaderboard
|
| 105 |
+
for i, row in best_models.iterrows():
|
| 106 |
+
model = row[AutoEvalColumn.dummy.name]
|
| 107 |
+
score = row[AutoEvalColumn.average.name]
|
| 108 |
+
language = row[AutoEvalColumn.main_language.name]
|
| 109 |
+
|
| 110 |
+
if language == 'Portuguese':
|
| 111 |
+
note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
|
| 112 |
+
else:
|
| 113 |
+
note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
|
| 114 |
+
try:
|
| 115 |
+
collection = add_collection_item(
|
| 116 |
+
PATH_TO_COLLECTION,
|
| 117 |
+
item_id=model,
|
| 118 |
+
item_type="model",
|
| 119 |
+
exists_ok=True,
|
| 120 |
+
note=note,
|
| 121 |
+
token=H4_TOKEN,
|
| 122 |
+
)
|
| 123 |
+
ix += 1
|
| 124 |
+
item_object_id = collection.items[-1].item_object_id
|
| 125 |
+
cur_best_models.append(model)
|
| 126 |
+
interval_scores.append(float(score))
|
| 127 |
+
interval_itens_languages.append(language)
|
| 128 |
+
interval_itens.append(item_object_id)
|
| 129 |
+
scores_per_type[model_type] = float(score)
|
| 130 |
+
break
|
| 131 |
+
except HfHubHTTPError:
|
| 132 |
+
continue
|
| 133 |
+
# fix order:
|
| 134 |
+
starting_idx = len(cur_best_models)
|
| 135 |
+
k = 0
|
| 136 |
+
for i in np.argsort(interval_scores):
|
| 137 |
+
if i == k:
|
| 138 |
+
continue
|
| 139 |
+
else:
|
| 140 |
+
try:
|
| 141 |
+
update_collection_item(
|
| 142 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=interval_itens[i], position=starting_idx+k
|
| 143 |
+
)
|
| 144 |
+
except:
|
| 145 |
+
pass
|
| 146 |
+
k += 1
|
| 147 |
|
| 148 |
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
| 149 |
for item in collection.items:
|