Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Merge branch 'main' of https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard into merge_original
811ded7
| import pandas as pd | |
| import numpy as np | |
| import plotly.express as px | |
| from plotly.graph_objs import Figure | |
| from src.leaderboard.filter_models import FLAGGED_MODELS | |
| from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, Tasks, Task, BENCHMARK_COLS | |
| from src.leaderboard.read_evals import EvalResult | |
| def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame: | |
| """ | |
| Generates a DataFrame containing the maximum scores until each date. | |
| :param results_df: A DataFrame containing result information including metric scores and dates. | |
| :return: A new DataFrame containing the maximum scores until each date for every metric. | |
| """ | |
| # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it | |
| #create dataframe with EvalResult dataclass columns, even if raw_data is empty | |
| results_df = pd.DataFrame(raw_data, columns=EvalResult.__dataclass_fields__.keys()) | |
| #results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) | |
| results_df.sort_values(by="date", inplace=True) | |
| # Step 2: Initialize the scores dictionary | |
| scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]} | |
| # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary | |
| for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]: | |
| current_max = 0 | |
| last_date = "" | |
| column = task.col_name | |
| for _, row in results_df.iterrows(): | |
| current_model = row["full_model"] | |
| # We ignore models that are flagged/no longer on the hub/not finished | |
| to_ignore = not row["still_on_hub"] or row["flagged"] or current_model in FLAGGED_MODELS or row["status"] != "FINISHED" | |
| if to_ignore: | |
| continue | |
| current_date = row["date"] | |
| if task.benchmark == "Average": | |
| current_score = np.mean(list(row["results"].values())) | |
| else: | |
| if task.benchmark not in row["results"]: | |
| continue | |
| current_score = row["results"][task.benchmark] | |
| if current_score > current_max: | |
| if current_date == last_date and len(scores[column]) > 0: | |
| scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score} | |
| else: | |
| scores[column].append({"model": current_model, "date": current_date, "score": current_score}) | |
| current_max = current_score | |
| last_date = current_date | |
| # Step 4: Return all dictionaries as DataFrames | |
| return {k: pd.DataFrame(v, columns=["model", "date", "score"]) for k, v in scores.items()} | |
| def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame: | |
| """ | |
| Transforms the scores DataFrame into a new format suitable for plotting. | |
| :param scores_df: A DataFrame containing metric scores and dates. | |
| :return: A new DataFrame reshaped for plotting purposes. | |
| """ | |
| # Initialize the list to store DataFrames | |
| dfs = [] | |
| # Iterate over the cols and create a new DataFrame for each column | |
| for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]: | |
| d = scores_df[col].reset_index(drop=True) | |
| d["task"] = col | |
| dfs.append(d) | |
| # Concatenate all the created DataFrames | |
| concat_df = pd.concat(dfs, ignore_index=True) | |
| # Sort values by 'date' | |
| concat_df.sort_values(by="date", inplace=True) | |
| concat_df.reset_index(drop=True, inplace=True) | |
| return concat_df | |
| def create_metric_plot_obj( | |
| df: pd.DataFrame, metrics: list[str], title: str | |
| ) -> Figure: | |
| """ | |
| Create a Plotly figure object with lines representing different metrics | |
| and horizontal dotted lines representing human baselines. | |
| :param df: The DataFrame containing the metric values, names, and dates. | |
| :param metrics: A list of strings representing the names of the metrics | |
| to be included in the plot. | |
| :param title: A string representing the title of the plot. | |
| :return: A Plotly figure object with lines representing metrics and | |
| horizontal dotted lines representing human baselines. | |
| """ | |
| # Filter the DataFrame based on the specified metrics | |
| df = df[df["task"].isin(metrics)] | |
| # Filter the human baselines based on the specified metrics | |
| filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics if v is not None} | |
| # Create a line figure using plotly express with specified markers and custom data | |
| fig = px.line( | |
| df, | |
| x="date", | |
| y="score", | |
| color="task", | |
| markers=True, | |
| custom_data=["task", "score", "model"], | |
| title=title, | |
| ) | |
| # Update hovertemplate for better hover interaction experience | |
| fig.update_traces( | |
| hovertemplate="<br>".join( | |
| [ | |
| "Model Name: %{customdata[2]}", | |
| "Metric Name: %{customdata[0]}", | |
| "Date: %{x}", | |
| "Metric Value: %{y}", | |
| ] | |
| ) | |
| ) | |
| # Update the range of the y-axis | |
| fig.update_layout(yaxis_range=[0, 100]) | |
| # Create a dictionary to hold the color mapping for each metric | |
| metric_color_mapping = {} | |
| # Map each metric name to its color in the figure | |
| for trace in fig.data: | |
| metric_color_mapping[trace.name] = trace.line.color | |
| # Iterate over filtered human baselines and add horizontal lines to the figure | |
| for metric, value in filtered_human_baselines.items(): | |
| color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found | |
| location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position | |
| # Add horizontal line with matched color and positioned annotation | |
| fig.add_hline( | |
| y=value, | |
| line_dash="dot", | |
| annotation_text=f"{metric} human baseline", | |
| annotation_position=location, | |
| annotation_font_size=10, | |
| annotation_font_color=color, | |
| line_color=color, | |
| ) | |
| return fig | |
| def create_lat_score_mem_plot_obj(leaderboard_df): | |
| copy_df = leaderboard_df.copy() | |
| copy_df = copy_df[~(copy_df[AutoEvalColumn.dummy.name].isin(["baseline", "human_baseline"]))] | |
| # plot | |
| SCORE_MEMORY_LATENCY_DATA = [ | |
| AutoEvalColumn.dummy.name, | |
| AutoEvalColumn.average.name, | |
| AutoEvalColumn.params.name, | |
| AutoEvalColumn.architecture.name, | |
| "Evaluation Time (min)" | |
| ] | |
| copy_df["LLM Average Score"] = copy_df[AutoEvalColumn.average.name] | |
| copy_df["Evaluation Time (min)"] = copy_df[AutoEvalColumn.eval_time.name] / 60 | |
| #copy_df["size"] = copy_df[AutoEvalColumn.params.name] | |
| copy_df["size"] = copy_df[AutoEvalColumn.params.name].apply(lambda x: 0.5 if 0 <= x < 0.8 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 0.8 if 0.8 <= x < 2 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 1.5 if 2 <= x < 5 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 2.0 if 5 <= x < 10 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 3.0 if 10 <= x < 20 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 4.5 if 20 <= x < 40 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 7.0 if x >= 40 else x) | |
| fig = px.scatter( | |
| copy_df, | |
| x="Evaluation Time (min)", | |
| y="LLM Average Score", | |
| size="size", | |
| color=AutoEvalColumn.architecture.name, | |
| custom_data=SCORE_MEMORY_LATENCY_DATA, | |
| color_discrete_sequence=px.colors.qualitative.Light24, | |
| log_x=True | |
| ) | |
| fig.update_traces( | |
| hovertemplate="<br>".join( | |
| [f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(SCORE_MEMORY_LATENCY_DATA)] | |
| ) | |
| ) | |
| fig.update_layout( | |
| title={ | |
| "text": "Eval Time vs. Score vs. #Params", | |
| "y": 0.95, | |
| "x": 0.5, | |
| "xanchor": "center", | |
| "yanchor": "top", | |
| }, | |
| xaxis_title="Time To Evaluate (min)", | |
| yaxis_title="LLM Average Score", | |
| legend_title="LLM Architecture", | |
| width=1200, | |
| height=600, | |
| ) | |
| return fig | |
| # Example Usage: | |
| # human_baselines dictionary is defined. | |
| # chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title") | |