File size: 1,155 Bytes
1bba5ba
 
 
a7aa871
1bba5ba
 
a7aa871
 
 
 
 
 
 
1bba5ba
a7aa871
1bba5ba
 
 
 
 
 
 
 
 
a7aa871
1bba5ba
a7aa871
7146057
 
a7aa871
1bba5ba
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import pathlib
import gradio as gr
# to solve the mismatch between windows (local) system and huggingspace (linux)
import platform
plt = platform.system()
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
elif plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath

from fastai.vision.all import *



class_names = ["resistor", "bipolar transistor", "mosfet", "capacitor", "inductor", "wire", "led", "diode", "thermistor", "switch", "battery", "hammer", "screwdriver", "scissors", "wrench", "mallet", "axe"]

learn = load_learner('model.pkl')
labels = learn.dls.vocab

def predict(img):
    img = PILImage.create(img)
    pred,pred_idx,probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}

iface = gr.Interface(
    fn=predict, 
    inputs=gr.components.Image(shape=(224, 224)), 
    outputs=gr.components.Label(num_top_classes=3),
    description="Tool Classifier",
    article=f"<h1>Class Names</h1><br><p style='text-align: center'>{', '.join(class_names)}</p>",
    examples=[["mosfet.jpg"], ["screwdriver.jpg"], ["hammel.png"], ["led.jpg"]],
    live=True,
    )

iface.launch(enable_queue=True)