|
import gradio as gr |
|
from fastai.vision.all import * |
|
|
|
learn = load_learner('export.pkl') |
|
labels = learn.dls.vocab |
|
|
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.components.Image(shape=(512, 512)), |
|
outputs=gr.components.Label(num_top_classes=3), |
|
description="Pet Classifier", |
|
article="<p style='text-align: center'><a href='google.com' target='_blank'>Blog post</a></p>", |
|
live=True, |
|
enable_queue=True, |
|
) |
|
iface.launch() |
|
|