Spaces:
Build error
Build error
Commit
·
b13cebd
1
Parent(s):
6c20b5b
Upload mmtafrica.py
Browse files- mmtafrica.py +961 -0
mmtafrica.py
ADDED
|
@@ -0,0 +1,961 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from locale import strcoll
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import optim
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 8 |
+
from transformers.optimization import Adafactor
|
| 9 |
+
from transformers import get_linear_schedule_with_warmup
|
| 10 |
+
from tqdm.notebook import tqdm
|
| 11 |
+
import random
|
| 12 |
+
import sacrebleu
|
| 13 |
+
import os
|
| 14 |
+
import pandas as pd
|
| 15 |
+
from sklearn.model_selection import train_test_split
|
| 16 |
+
import torch.multiprocessing as mp
|
| 17 |
+
from torch.multiprocessing import Process, Queue
|
| 18 |
+
from joblib import Parallel, delayed,parallel_backend
|
| 19 |
+
import sys
|
| 20 |
+
from functools import partial
|
| 21 |
+
import json
|
| 22 |
+
import time
|
| 23 |
+
import numpy as np
|
| 24 |
+
from datetime import datetime
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Config():
|
| 28 |
+
def __init__(self,args) -> None:
|
| 29 |
+
|
| 30 |
+
self.homepath = args.homepath
|
| 31 |
+
self.prediction_path = os.path.join(args.homepath,args.prediction_path)
|
| 32 |
+
# Use 'google/mt5-small' for non-pro cloab users
|
| 33 |
+
self.model_repo = 'google/mt5-base'
|
| 34 |
+
self.model_path_dir = args.homepath
|
| 35 |
+
self.model_name = f'{args.model_name}.pt'
|
| 36 |
+
self.bt_data_dir = os.path.join(args.homepath,args.bt_data_dir)
|
| 37 |
+
|
| 38 |
+
#Data part
|
| 39 |
+
self.parallel_dir= os.path.join(args.homepath,args.parallel_dir)
|
| 40 |
+
self.mono_dir= os.path.join(args.homepath,args.mono_dir)
|
| 41 |
+
|
| 42 |
+
self.log = os.path.join(args.homepath,args.log)
|
| 43 |
+
self.mono_data_limit = args.mono_data_limit
|
| 44 |
+
self.mono_data_for_noise_limit=args.mono_data_for_noise_limit
|
| 45 |
+
#Training params
|
| 46 |
+
self.n_epochs = args.n_epochs
|
| 47 |
+
self.n_bt_epochs=args.n_bt_epochs
|
| 48 |
+
|
| 49 |
+
self.batch_size = args.batch_size
|
| 50 |
+
self.max_seq_len = args.max_seq_len
|
| 51 |
+
self.min_seq_len = args.min_seq_len
|
| 52 |
+
self.checkpoint_freq = args.checkpoint_freq
|
| 53 |
+
self.lr = 1e-4
|
| 54 |
+
self.print_freq = args.print_freq
|
| 55 |
+
self.use_multiprocessing = args.use_multiprocessing
|
| 56 |
+
|
| 57 |
+
self.num_cores = mp.cpu_count()
|
| 58 |
+
self.NUM_PRETRAIN = args.num_pretrain_steps
|
| 59 |
+
self.NUM_BACKTRANSLATION_TIMES =args.num_backtranslation_steps
|
| 60 |
+
self.do_backtranslation=args.do_backtranslation
|
| 61 |
+
self.now_on_bt=False
|
| 62 |
+
self.bt_time=0
|
| 63 |
+
self.using_reconstruction= args.use_reconstruction
|
| 64 |
+
self.num_return_sequences_bt=2
|
| 65 |
+
self.use_torch_data_parallel = args.use_torch_data_parallel
|
| 66 |
+
|
| 67 |
+
self.gradient_accumulation_batch = args.gradient_accumulation_batch
|
| 68 |
+
self.num_beams = args.num_beams
|
| 69 |
+
|
| 70 |
+
self.best_loss = 1000
|
| 71 |
+
self.best_loss_delta = 0.00000001
|
| 72 |
+
self.patience=args.patience
|
| 73 |
+
self.L2=0.0000001
|
| 74 |
+
self.dropout=args.dropout
|
| 75 |
+
|
| 76 |
+
self.drop_prob=args.drop_probability
|
| 77 |
+
self.num_swaps=args.num_swaps
|
| 78 |
+
|
| 79 |
+
self.verbose=args.verbose
|
| 80 |
+
|
| 81 |
+
self.now_on_test=False
|
| 82 |
+
|
| 83 |
+
#Initialization of state dict which will be saved during training
|
| 84 |
+
self.state_dict = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss}
|
| 85 |
+
self.state_dict_check = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss} #this is for tracing training after abrupt end!
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
self.device = torch.device('cuda' if True and torch.cuda.is_available() else 'cpu')
|
| 90 |
+
|
| 91 |
+
#We will be leveraging parallel and monolingual data for each of these languages.
|
| 92 |
+
#parallel data will be saved in a central 'parallel_data 'folder as 'src'_'tg'_parallel.tsv
|
| 93 |
+
#monolingual data will be saved in another folder called 'monolingual_data' as 'lg'_mono.tsv
|
| 94 |
+
|
| 95 |
+
#Each tsv file is of the form "input", "output"
|
| 96 |
+
self.LANG_TOKEN_MAPPING = {
|
| 97 |
+
'ig': '<ig>',
|
| 98 |
+
'fon': '<fon>',
|
| 99 |
+
'en': '<en>',
|
| 100 |
+
'fr': '<fr>',
|
| 101 |
+
'rw':'<rw>',
|
| 102 |
+
'yo':'<yo>',
|
| 103 |
+
'xh':'<xh>',
|
| 104 |
+
'sw':'<sw>'
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
self.truncation=True
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def beautify_time(time):
|
| 114 |
+
hr = time//(3600)
|
| 115 |
+
mins = (time-(hr*3600))//60
|
| 116 |
+
rest = time -(hr*3600) - (mins*60)
|
| 117 |
+
#DARIA's implementation!
|
| 118 |
+
sp = ""
|
| 119 |
+
if hr >=1:
|
| 120 |
+
sp += '{} hours'.format(hr)
|
| 121 |
+
if mins >=1:
|
| 122 |
+
sp += ' {} mins'.format(mins)
|
| 123 |
+
if rest >=1:
|
| 124 |
+
sp += ' {} seconds'.format(rest)
|
| 125 |
+
return sp
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def word_delete(x,config):
|
| 130 |
+
noise=[]
|
| 131 |
+
words = x.split(' ')
|
| 132 |
+
if len(words) == 1:
|
| 133 |
+
return x
|
| 134 |
+
for w in words:
|
| 135 |
+
a= np.random.choice([0,1], 1, p=[config.drop_prob, 1-config.drop_prob])
|
| 136 |
+
if a[0]==1: #It means don't delete
|
| 137 |
+
noise.append(w)
|
| 138 |
+
#if you end up deleting all words, just return a random word
|
| 139 |
+
if len(noise) == 0:
|
| 140 |
+
rand_int = random.randint(0, len(words)-1)
|
| 141 |
+
return [words[rand_int]]
|
| 142 |
+
|
| 143 |
+
return ' '.join(noise)
|
| 144 |
+
|
| 145 |
+
def swap_word(new_words):
|
| 146 |
+
|
| 147 |
+
random_idx_1 = random.randint(0, len(new_words)-1)
|
| 148 |
+
random_idx_2 = random_idx_1
|
| 149 |
+
counter = 0
|
| 150 |
+
|
| 151 |
+
while random_idx_2 == random_idx_1:
|
| 152 |
+
random_idx_2 = random.randint(0, len(new_words)-1)
|
| 153 |
+
counter += 1
|
| 154 |
+
|
| 155 |
+
if counter > 3:
|
| 156 |
+
return new_words
|
| 157 |
+
|
| 158 |
+
new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1]
|
| 159 |
+
return new_words
|
| 160 |
+
|
| 161 |
+
def random_swap(words, n):
|
| 162 |
+
|
| 163 |
+
words = words.split()
|
| 164 |
+
new_words = words.copy()
|
| 165 |
+
|
| 166 |
+
for _ in range(n):
|
| 167 |
+
new_words = swap_word(new_words)
|
| 168 |
+
|
| 169 |
+
sentence = ' '.join(new_words)
|
| 170 |
+
|
| 171 |
+
return sentence
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def get_dict(input,target,src,tgt):
|
| 176 |
+
inp = [i for i in input]
|
| 177 |
+
target_ = [ i for i in target]
|
| 178 |
+
s= [src for i in range(len(inp))]
|
| 179 |
+
t = [tgt for i in range(len(target_))]
|
| 180 |
+
return [{'inputs':inp_,'targets':target__,'src':s_,'tgt':t_} for inp_,target__,s_,t_ in zip(inp,target_,s,t)]
|
| 181 |
+
|
| 182 |
+
def get_dict_mono(input,src,config):
|
| 183 |
+
index = [i for i in range(len(input))]
|
| 184 |
+
ids = random.sample(index,config.mono_data_limit)
|
| 185 |
+
inp = [input[i] for i in ids]
|
| 186 |
+
s= [src for i in range(len(inp))]
|
| 187 |
+
data=[]
|
| 188 |
+
for lang in config.LANG_TOKEN_MAPPING.keys():
|
| 189 |
+
if lang!=src and lang not in ['en','fr']:
|
| 190 |
+
data.extend([{'inputs':inp_,'src':s_,'tgt':lang} for inp_,s_ in zip(inp,s)])
|
| 191 |
+
return data
|
| 192 |
+
|
| 193 |
+
def get_dict_mono_noise(input,src,config):
|
| 194 |
+
index = [i for i in range(len(input))]
|
| 195 |
+
ids = random.sample(index,config.mono_data_for_noise_limit)
|
| 196 |
+
inp = [input[i] for i in ids]
|
| 197 |
+
noised = [word_delete(random_swap(str(x),config.num_swaps),config) for x in inp]
|
| 198 |
+
s= [src for i in range(len(inp))]
|
| 199 |
+
data=[]
|
| 200 |
+
data.extend([{'inputs':noise_,'targets':inp_,'src':s_,'tgt':s_} for inp_,s_,noise_ in zip(inp,s,noised)])
|
| 201 |
+
return data
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def compress(input,target,src,tgt):
|
| 205 |
+
return {'inputs':input,'targets':target,'src':src,'tgt':tgt}
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def make_dataset(config,mode):
|
| 209 |
+
if mode!='eval' and mode!='train' and mode!='test':
|
| 210 |
+
raise Exception('mode is either train or eval or test!')
|
| 211 |
+
else:
|
| 212 |
+
|
| 213 |
+
files = [f.name for f in os.scandir(config.parallel_dir) ]
|
| 214 |
+
files = [f for f in files if f.split('.')[-1]=='tsv' and f.split('.tsv')[0].endswith(mode) and len(f.split('_'))>2 ]
|
| 215 |
+
data = [(f_.split('_')[0],f_.split('_')[1],pd.read_csv(os.path.join(config.parallel_dir,f_), sep="\t")) for f_ in files]
|
| 216 |
+
dict_ = [get_dict(df['input'],df['target'],src,tgt) for src,tgt,df in data]
|
| 217 |
+
return [item for sublist in dict_ for item in sublist]
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def get_model_translation(config,model,tokenizer,sentence,tgt):
|
| 222 |
+
if config.use_torch_data_parallel:
|
| 223 |
+
max_seq_len_ = model.module.config.max_length
|
| 224 |
+
else:
|
| 225 |
+
max_seq_len_ = model.config.max_length
|
| 226 |
+
input_ids = encode_input_str(config,text = sentence,target_lang = tgt,tokenizer = tokenizer,seq_len = max_seq_len_).unsqueeze(0).to(config.device)
|
| 227 |
+
if config.use_torch_data_parallel:
|
| 228 |
+
out = model.module.generate(input_ids,num_beams=3,do_sample=True, num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len)
|
| 229 |
+
else:
|
| 230 |
+
out = model.generate(input_ids,num_beams=3, do_sample=True,num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len)
|
| 231 |
+
|
| 232 |
+
out_id = [i for i in range(config.num_return_sequences_bt)]
|
| 233 |
+
id_ = random.sample(out_id,1)
|
| 234 |
+
|
| 235 |
+
return tokenizer.decode(out[id_][0], skip_special_tokens=True)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def do_job(t,id_,tokenizers):
|
| 239 |
+
tokenizer = tokenizers[id_ % len(tokenizers)]
|
| 240 |
+
#We flip the input as target and vice versa in order to have target-side backtranslation (where source side is synthetic).
|
| 241 |
+
return {'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']}
|
| 242 |
+
#return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']}
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def do_job_pmap(t):
|
| 246 |
+
#tokenizer = tokenizers[id_ % len(tokenizers)]
|
| 247 |
+
return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']}
|
| 248 |
+
|
| 249 |
+
def do_job_pool(bt_data,model,id_,tokenizers,config,mono_data):
|
| 250 |
+
tokenizer = tokenizers[id_]
|
| 251 |
+
if config.verbose:
|
| 252 |
+
print(f"Mono data inside job pool: {mono_data}")
|
| 253 |
+
sys.stdout.flush()
|
| 254 |
+
res = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in mono_data]
|
| 255 |
+
bt_data.put(res)
|
| 256 |
+
return None
|
| 257 |
+
|
| 258 |
+
def mono_data_(config):
|
| 259 |
+
#Find and prepare all the mono data in the directory
|
| 260 |
+
files_ = [f.name for f in os.scandir(config.mono_dir) ]
|
| 261 |
+
files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')]
|
| 262 |
+
if config.verbose:
|
| 263 |
+
print("Generating data for back translation")
|
| 264 |
+
print(f"Files found in mono dir: {files}")
|
| 265 |
+
data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t")) for f_ in files]
|
| 266 |
+
dict_ = [get_dict_mono(df['input'],src,config) for src,df in data]
|
| 267 |
+
mono_data = [item for sublist in dict_ for item in sublist]
|
| 268 |
+
return mono_data
|
| 269 |
+
|
| 270 |
+
def mono_data_noise(config):
|
| 271 |
+
#Find and prepare all the mono data in the directory
|
| 272 |
+
files_ = [f.name for f in os.scandir(config.mono_dir) ]
|
| 273 |
+
files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')]
|
| 274 |
+
if config.verbose:
|
| 275 |
+
print("Generating data for back translation")
|
| 276 |
+
print(f"Files found in mono dir: {files}")
|
| 277 |
+
data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t")) for f_ in files]
|
| 278 |
+
dict_ = [get_dict_mono_noise(df['input'],src,config) for src,df in data]
|
| 279 |
+
mono_data = [item for sublist in dict_ for item in sublist]
|
| 280 |
+
return mono_data
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def get_mono_data(config,model):
|
| 285 |
+
mono_data = mono_data_(config)
|
| 286 |
+
|
| 287 |
+
if config.use_multiprocessing:
|
| 288 |
+
if config.verbose:
|
| 289 |
+
print(f"Using multiprocessing on {config.num_cores} processes")
|
| 290 |
+
if __name__ == "__main__":
|
| 291 |
+
ctx = mp.get_context('spawn')
|
| 292 |
+
#mp.set_start_method("spawn",force=True)
|
| 293 |
+
bt_data = ctx.Queue()
|
| 294 |
+
model.share_memory()
|
| 295 |
+
num_processes = config.num_cores
|
| 296 |
+
NUM_TO_USE = len(mono_data)//num_processes
|
| 297 |
+
mini_mono_data = [mono_data[i:i + NUM_TO_USE] for i in range(0, len(mono_data), NUM_TO_USE)]
|
| 298 |
+
#print(f"Length of mini mono data {len(mini_mono_data)}. Length of processes: {num_processes}")
|
| 299 |
+
assert len(mini_mono_data) == num_processes, "Length of mini mono data and number of processes do not match."
|
| 300 |
+
|
| 301 |
+
num_processes_range = [i for i in range(num_processes)]
|
| 302 |
+
processes = []
|
| 303 |
+
for rank,data_ in tqdm(zip(num_processes_range,mini_mono_data)):
|
| 304 |
+
p = ctx.Process(target=do_job_pool, args=(bt_data,model,rank,tokenizers_for_parallel,config,data_))
|
| 305 |
+
p.start()
|
| 306 |
+
if config.verbose:
|
| 307 |
+
print(f"Bt data: {bt_data.get()}")
|
| 308 |
+
sys.stdout.flush()
|
| 309 |
+
processes.append(p)
|
| 310 |
+
|
| 311 |
+
for p in processes:
|
| 312 |
+
p.join()
|
| 313 |
+
|
| 314 |
+
return bt_data
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
#output = multiprocessing.Queue()
|
| 319 |
+
#multiprocessing.set_start_method("spawn",force=True)
|
| 320 |
+
#pool = mp.Pool(processes=config.num_cores)
|
| 321 |
+
#bt_data = [pool.apply(do_job, args=(data_,i,tokenizers_for_parallel,)) for i,data_ in enumerate(mono_data)]
|
| 322 |
+
|
| 323 |
+
'''
|
| 324 |
+
# Setup a list of processes that we want to run
|
| 325 |
+
processes = [mp.Process(target=do_job, args=(5, output)) for x in range(config.num_cores)]
|
| 326 |
+
if __name__ == "__main__":
|
| 327 |
+
#pool = mp.Pool(processes=config.num_cores)
|
| 328 |
+
with parallel_backend('loky'):
|
| 329 |
+
bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in enumerate(mono_data))
|
| 330 |
+
'''
|
| 331 |
+
else:
|
| 332 |
+
bt_data = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in tqdm(mono_data)]
|
| 333 |
+
return bt_data
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def encode_input_str(config,text, target_lang, tokenizer, seq_len):
|
| 338 |
+
|
| 339 |
+
target_lang_token = config.LANG_TOKEN_MAPPING[target_lang]
|
| 340 |
+
|
| 341 |
+
# Tokenize and add special tokens
|
| 342 |
+
input_ids = tokenizer.encode(
|
| 343 |
+
text = str(target_lang_token) + str(text),
|
| 344 |
+
return_tensors = 'pt',
|
| 345 |
+
padding = 'max_length',
|
| 346 |
+
truncation = config.truncation,
|
| 347 |
+
max_length = seq_len)
|
| 348 |
+
|
| 349 |
+
return input_ids[0]
|
| 350 |
+
|
| 351 |
+
def encode_target_str(config,text, tokenizer, seq_len):
|
| 352 |
+
token_ids = tokenizer.encode(
|
| 353 |
+
text = str(text),
|
| 354 |
+
return_tensors = 'pt',
|
| 355 |
+
padding = 'max_length',
|
| 356 |
+
truncation = config.truncation,
|
| 357 |
+
max_length = seq_len)
|
| 358 |
+
|
| 359 |
+
return token_ids[0]
|
| 360 |
+
|
| 361 |
+
def format_translation_data(config,sample,tokenizer,seq_len):
|
| 362 |
+
|
| 363 |
+
# sample is of the form {'inputs':input,'targets':target,'src':src,'tgt':tgt}
|
| 364 |
+
|
| 365 |
+
# Get the translations for the batch
|
| 366 |
+
|
| 367 |
+
input_lang = sample['src']
|
| 368 |
+
target_lang = sample['tgt']
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
input_text = sample['inputs']
|
| 372 |
+
target_text = sample['targets']
|
| 373 |
+
|
| 374 |
+
if input_text is None or target_text is None:
|
| 375 |
+
return None
|
| 376 |
+
|
| 377 |
+
input_token_ids = encode_input_str(config,input_text, target_lang, tokenizer, seq_len)
|
| 378 |
+
|
| 379 |
+
target_token_ids = encode_target_str(config,target_text, tokenizer, seq_len)
|
| 380 |
+
|
| 381 |
+
return input_token_ids, target_token_ids
|
| 382 |
+
|
| 383 |
+
def transform_batch(config,batch,tokenizer,max_seq_len):
|
| 384 |
+
inputs = []
|
| 385 |
+
targets = []
|
| 386 |
+
for sample in batch:
|
| 387 |
+
formatted_data = format_translation_data(config,sample,tokenizer,max_seq_len)
|
| 388 |
+
|
| 389 |
+
if formatted_data is None:
|
| 390 |
+
continue
|
| 391 |
+
|
| 392 |
+
input_ids, target_ids = formatted_data
|
| 393 |
+
inputs.append(input_ids.unsqueeze(0))
|
| 394 |
+
targets.append(target_ids.unsqueeze(0))
|
| 395 |
+
|
| 396 |
+
batch_input_ids = torch.cat(inputs)
|
| 397 |
+
batch_target_ids = torch.cat(targets)
|
| 398 |
+
|
| 399 |
+
return batch_input_ids, batch_target_ids
|
| 400 |
+
|
| 401 |
+
def get_data_generator(config,dataset,tokenizer,max_seq_len,batch_size):
|
| 402 |
+
random.shuffle(dataset)
|
| 403 |
+
|
| 404 |
+
for i in range(0, len(dataset), batch_size):
|
| 405 |
+
raw_batch = dataset[i:i+batch_size]
|
| 406 |
+
yield transform_batch(config,raw_batch, tokenizer,max_seq_len)
|
| 407 |
+
|
| 408 |
+
def eval_model(config,tokenizer,model, gdataset, max_iters=8):
|
| 409 |
+
test_generator = get_data_generator(config,gdataset,tokenizer,config.max_seq_len, config.batch_size)
|
| 410 |
+
eval_losses = []
|
| 411 |
+
for i, (input_batch, label_batch) in enumerate(test_generator):
|
| 412 |
+
|
| 413 |
+
input_batch, label_batch = input_batch.to(config.device), label_batch.to(config.device)
|
| 414 |
+
model_out = model.forward(
|
| 415 |
+
input_ids = input_batch,
|
| 416 |
+
labels = label_batch)
|
| 417 |
+
|
| 418 |
+
if config.use_torch_data_parallel:
|
| 419 |
+
loss = torch.mean(model_out.loss)
|
| 420 |
+
else:
|
| 421 |
+
loss = model_out.loss
|
| 422 |
+
|
| 423 |
+
eval_losses.append(loss.item())
|
| 424 |
+
|
| 425 |
+
return np.mean(eval_losses)
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
def evaluate(config,tokenizer,model,test_dataset,src_lang=None,tgt_lang=None):
|
| 430 |
+
if src_lang!=None and tgt_lang!=None:
|
| 431 |
+
if config.verbose:
|
| 432 |
+
with open(config.log,'a+') as fl:
|
| 433 |
+
print(f"Getting evaluation set for source language -> {src_lang} and target language -> {tgt_lang}",file=fl)
|
| 434 |
+
data = [t for t in test_dataset if t['src']==src_lang and t['tgt']==tgt_lang]
|
| 435 |
+
|
| 436 |
+
else:
|
| 437 |
+
data= [t for t in test_dataset]
|
| 438 |
+
|
| 439 |
+
inp = [t['inputs'] for t in data]
|
| 440 |
+
truth = [t['targets'] for t in data]
|
| 441 |
+
tgt_lang_ = [t['tgt'] for t in data]
|
| 442 |
+
|
| 443 |
+
seq_len__ = config.max_seq_len
|
| 444 |
+
|
| 445 |
+
input_tokens = [encode_input_str(config,text = inp[i],target_lang = tgt_lang_[i],tokenizer = tokenizer,seq_len =seq_len__).unsqueeze(0).to(config.device) for i in range(len(inp))]
|
| 446 |
+
|
| 447 |
+
if config.use_torch_data_parallel:
|
| 448 |
+
output = [model.module.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)]
|
| 449 |
+
else:
|
| 450 |
+
output = [model.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)]
|
| 451 |
+
output = [tokenizer.decode(out[0], skip_special_tokens=True) for out in tqdm(output)]
|
| 452 |
+
|
| 453 |
+
df= pd.DataFrame({'predictions':output,'truth':truth,'inputs':inp})
|
| 454 |
+
if config.now_on_bt and config.using_reconstruction:
|
| 455 |
+
filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}_rec.tsv'
|
| 456 |
+
elif config.now_on_bt:
|
| 457 |
+
filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}.tsv'
|
| 458 |
+
elif config.now_on_test:
|
| 459 |
+
filename = f'{src_lang}_{tgt_lang}_TEST.tsv'
|
| 460 |
+
else:
|
| 461 |
+
filename = f'{src_lang}_{tgt_lang}.tsv'
|
| 462 |
+
df.to_csv(os.path.join(config.prediction_path,filename),sep='\t',index=False)
|
| 463 |
+
try:
|
| 464 |
+
spbleu = sacrebleu.corpus_bleu(output, [truth])
|
| 465 |
+
except Exception:
|
| 466 |
+
raise Exception(f'There is a problem with {src_lang}_{tgt_lang}. Truth is {truth} \n Input is {inp} ')
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
return spbleu.score
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
def do_evaluation(config,tokenizer,model,test_dataset):
|
| 474 |
+
LANGS = list(config.LANG_TOKEN_MAPPING.keys())
|
| 475 |
+
if config.now_on_bt and config.using_reconstruction:
|
| 476 |
+
s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time} with RECONSTRUCTION---------------------------'+'\n'
|
| 477 |
+
elif config.now_on_bt:
|
| 478 |
+
s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time}---------------------------'+'\n'
|
| 479 |
+
elif config.now_on_test:
|
| 480 |
+
s=f'---------------------------TESTING EVALUATION---------------------------'+'\n'
|
| 481 |
+
else:
|
| 482 |
+
s=f'---------------------------EVALUATION ON DEV---------------------------'+'\n'
|
| 483 |
+
for i in range(len(LANGS)):
|
| 484 |
+
for j in range(len(LANGS)):
|
| 485 |
+
if LANGS[j]!=LANGS[i]:
|
| 486 |
+
eval_bleu = evaluate(config,tokenizer,model,test_dataset,src_lang=LANGS[i],tgt_lang=LANGS[j])
|
| 487 |
+
a = f'Bleu Score for {LANGS[i]} to {LANGS[j]} -> {eval_bleu} '+'\n'
|
| 488 |
+
s+=a
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
s+='------------------------------------------------------'
|
| 492 |
+
with open(os.path.join(config.homepath,'bleu_log.txt'), 'a+') as fl:
|
| 493 |
+
print(s,file=fl)
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
def train(config,n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model,save_with_bt=False):
|
| 497 |
+
patience=0
|
| 498 |
+
losses = []
|
| 499 |
+
for epoch_idx in range(n_epochs):
|
| 500 |
+
if epoch_idx>=config.state_dict_check['epoch']+1:
|
| 501 |
+
st_time = time.time()
|
| 502 |
+
avg_loss=0
|
| 503 |
+
# Randomize data order
|
| 504 |
+
data_generator = get_data_generator(config,train_dataset,tokenizer,config.max_seq_len, config.batch_size)
|
| 505 |
+
optimizer.zero_grad()
|
| 506 |
+
for batch_idx, (input_batch, label_batch) in tqdm(enumerate(data_generator), total=n_batches):
|
| 507 |
+
if batch_idx >= config.state_dict_check['batch_idx']:
|
| 508 |
+
|
| 509 |
+
input_batch,label_batch = input_batch.to(config.device),label_batch.to(config.device)
|
| 510 |
+
# Forward pass
|
| 511 |
+
model_out = model.forward(input_ids = input_batch, labels = label_batch)
|
| 512 |
+
|
| 513 |
+
# Calculate loss and update weights
|
| 514 |
+
if config.use_torch_data_parallel:
|
| 515 |
+
loss = torch.mean(model_out.loss)
|
| 516 |
+
else:
|
| 517 |
+
loss = model_out.loss
|
| 518 |
+
|
| 519 |
+
losses.append(loss.item())
|
| 520 |
+
loss.backward()
|
| 521 |
+
|
| 522 |
+
#Gradient accumulation
|
| 523 |
+
if (batch_idx+1) % config.gradient_accumulation_batch == 0:
|
| 524 |
+
optimizer.step()
|
| 525 |
+
optimizer.zero_grad()
|
| 526 |
+
# Print training update info
|
| 527 |
+
if (batch_idx + 1) % config.print_freq == 0:
|
| 528 |
+
avg_loss = np.mean(losses)
|
| 529 |
+
losses=[]
|
| 530 |
+
if config.verbose:
|
| 531 |
+
with open(config.log,'a+') as fl:
|
| 532 |
+
print('Epoch: {} | Step: {} | Avg. loss: {:.3f}'.format(epoch_idx+1, batch_idx+1, avg_loss),file=fl)
|
| 533 |
+
|
| 534 |
+
if (batch_idx + 1) % config.checkpoint_freq == 0:
|
| 535 |
+
test_loss = eval_model(config,tokenizer,model, dev_dataset)
|
| 536 |
+
if config.best_loss-test_loss > config.best_loss_delta:
|
| 537 |
+
config.best_loss = test_loss
|
| 538 |
+
patience=0
|
| 539 |
+
if config.verbose:
|
| 540 |
+
with open(config.log,'a+') as fl:
|
| 541 |
+
print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl)
|
| 542 |
+
|
| 543 |
+
if save_with_bt:
|
| 544 |
+
model_name = config.model_name.split('.')[0]+'_bt.pt'
|
| 545 |
+
else:
|
| 546 |
+
model_name = config.model_name
|
| 547 |
+
|
| 548 |
+
config.state_dict.update({'batch_idx': batch_idx,'epoch':epoch_idx,'bt_time':config.bt_time-1,'best_loss':config.best_loss})
|
| 549 |
+
if config.use_torch_data_parallel:
|
| 550 |
+
config.state_dict['model_state_dict']=model.module.state_dict()
|
| 551 |
+
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
|
| 552 |
+
else:
|
| 553 |
+
config.state_dict['model_state_dict']=model.state_dict()
|
| 554 |
+
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
|
| 555 |
+
else:
|
| 556 |
+
if config.verbose:
|
| 557 |
+
with open(config.log,'a+') as fl:
|
| 558 |
+
print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl)
|
| 559 |
+
patience+=1
|
| 560 |
+
if patience >= config.patience:
|
| 561 |
+
with open(config.log,'a+') as fl:
|
| 562 |
+
print("Stopping model training due to early stopping",file=fl)
|
| 563 |
+
break
|
| 564 |
+
with open(config.log,'a+') as fl:
|
| 565 |
+
print('Epoch: {} | Step: {} | Avg. loss: {:.3f} | Time taken: {} | Time: {}'.format(epoch_idx+1, batch_idx+1, avg_loss, beautify_time(time.time()-st_time),datetime.now()),file=fl)
|
| 566 |
+
|
| 567 |
+
# Do this after epochs to get status of model at end of training----
|
| 568 |
+
test_loss = eval_model(config,tokenizer,model, dev_dataset)
|
| 569 |
+
if config.best_loss-test_loss > config.best_loss_delta:
|
| 570 |
+
config.best_loss = test_loss
|
| 571 |
+
patience=0
|
| 572 |
+
if config.verbose:
|
| 573 |
+
with open(config.log,'a+') as fl:
|
| 574 |
+
print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl)
|
| 575 |
+
|
| 576 |
+
if save_with_bt:
|
| 577 |
+
model_name = config.model_name.split('.')[0]+'_bt.pt'
|
| 578 |
+
else:
|
| 579 |
+
model_name = config.model_name
|
| 580 |
+
|
| 581 |
+
config.state_dict.update({'batch_idx': n_batches-1,'epoch':n_epochs-1,'bt_time':config.bt_time-1,'best_loss':config.best_loss})
|
| 582 |
+
if config.use_torch_data_parallel:
|
| 583 |
+
config.state_dict['model_state_dict']=model.module.state_dict()
|
| 584 |
+
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
|
| 585 |
+
else:
|
| 586 |
+
config.state_dict['model_state_dict']=model.state_dict()
|
| 587 |
+
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
|
| 588 |
+
else:
|
| 589 |
+
if config.verbose:
|
| 590 |
+
with open(config.log,'a+') as fl:
|
| 591 |
+
print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl)
|
| 592 |
+
patience+=1
|
| 593 |
+
#---------------------------------------------
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def main(args):
|
| 598 |
+
if not os.path.exists(args.homepath):
|
| 599 |
+
raise Exception(f'HOMEPATH {args.homepath} does not exist!')
|
| 600 |
+
config = Config(args)
|
| 601 |
+
if not os.path.exists(config.prediction_path):
|
| 602 |
+
os.makedirs(config.prediction_path)
|
| 603 |
+
if not os.path.exists(config.bt_data_dir):
|
| 604 |
+
os.makedirs(config.bt_data_dir)
|
| 605 |
+
"""# Load Tokenizer & Model"""
|
| 606 |
+
|
| 607 |
+
tokenizer = AutoTokenizer.from_pretrained(config.model_repo)
|
| 608 |
+
if config.use_multiprocessing:
|
| 609 |
+
tokenizers_for_parallel = [AutoTokenizer.from_pretrained(config.model_repo) for i in range(config.num_cores)]
|
| 610 |
+
|
| 611 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(config.model_repo)
|
| 612 |
+
|
| 613 |
+
if not os.path.exists(config.parallel_dir):
|
| 614 |
+
raise Exception(f'Directory `{config.parallel_dir}` cannot be empty! It must contain the parallel files')
|
| 615 |
+
|
| 616 |
+
train_dataset = make_dataset(config,'train')
|
| 617 |
+
with open(config.log,'a+') as fl:
|
| 618 |
+
print(f"Length of train dataset: {len(train_dataset)}",file=fl)
|
| 619 |
+
|
| 620 |
+
dev_dataset = make_dataset(config,'eval')
|
| 621 |
+
with open(config.log,'a+') as fl:
|
| 622 |
+
print(f"Length of dev dataset: {len(dev_dataset)}",file=fl)
|
| 623 |
+
|
| 624 |
+
"""## Update tokenizer"""
|
| 625 |
+
special_tokens_dict = {'additional_special_tokens': list(config.LANG_TOKEN_MAPPING.values())}
|
| 626 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
| 627 |
+
if config.use_multiprocessing:
|
| 628 |
+
for tk in tokenizers_for_parallel:
|
| 629 |
+
tk.add_special_tokens(special_tokens_dict)
|
| 630 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
"""# Train/Finetune MT5"""
|
| 634 |
+
if os.path.exists(os.path.join(config.model_path_dir,config.model_name)):
|
| 635 |
+
if config.verbose:
|
| 636 |
+
with open(config.log,'a+') as fl:
|
| 637 |
+
print("-----------Using model checkpoint-----------",file=fl)
|
| 638 |
+
|
| 639 |
+
try:
|
| 640 |
+
state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name.split('.')[0]+'_bt.pt'))
|
| 641 |
+
except Exception:
|
| 642 |
+
with open(config.log,'a+') as fl:
|
| 643 |
+
print('No mmt_translation_bt.pt present. Default to original mmt_translation.pt',file=fl)
|
| 644 |
+
state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name))
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
# Note to self: Make this beter.
|
| 648 |
+
config.state_dict_check['epoch']=state_dict['epoch']
|
| 649 |
+
config.state_dict_check['bt_time']=state_dict['bt_time']
|
| 650 |
+
config.state_dict_check['best_loss']=state_dict['best_loss']
|
| 651 |
+
config.best_loss = config.state_dict_check['best_loss']
|
| 652 |
+
config.state_dict_check['batch_idx']=state_dict['batch_idx']
|
| 653 |
+
model.load_state_dict(state_dict['model_state_dict'])
|
| 654 |
+
|
| 655 |
+
#Temp change
|
| 656 |
+
config.state_dict_check['epoch']=-1
|
| 657 |
+
config.state_dict_check['batch_idx']=0
|
| 658 |
+
config.state_dict_check['bt_time']=-1
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
#Using DataParallel
|
| 662 |
+
if config.use_torch_data_parallel:
|
| 663 |
+
model = torch.nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
|
| 664 |
+
model = model.to(config.device)
|
| 665 |
+
#-----
|
| 666 |
+
|
| 667 |
+
# Optimizer
|
| 668 |
+
optimizer = Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=config.lr)
|
| 669 |
+
|
| 670 |
+
#Normal training
|
| 671 |
+
n_batches = int(np.ceil(len(train_dataset) / config.batch_size))
|
| 672 |
+
total_steps = config.n_epochs * n_batches
|
| 673 |
+
n_warmup_steps = int(total_steps * 0.01)
|
| 674 |
+
|
| 675 |
+
#scheduler = get_linear_schedule_with_warmup(optimizer, n_warmup_steps, total_steps)
|
| 676 |
+
#scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=config.lr, max_lr=0.001,cycle_momentum=False)
|
| 677 |
+
|
| 678 |
+
train(config,config.n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model)
|
| 679 |
+
if config.verbose:
|
| 680 |
+
with open(config.log,'a+') as fl:
|
| 681 |
+
print('Evaluaton...',file=fl)
|
| 682 |
+
do_evaluation(config,tokenizer,model,dev_dataset)
|
| 683 |
+
config.state_dict_check['epoch']=-1
|
| 684 |
+
config.state_dict_check['batch_idx']=0
|
| 685 |
+
|
| 686 |
+
if config.do_backtranslation:
|
| 687 |
+
#Backtranslation time
|
| 688 |
+
config.now_on_bt=True
|
| 689 |
+
with open(config.log,'a+') as fl:
|
| 690 |
+
print('---------------Start of Backtranslation---------------',file=fl)
|
| 691 |
+
for n_bt in range(config.NUM_BACKTRANSLATION_TIMES):
|
| 692 |
+
if n_bt>=config.state_dict_check['bt_time']+1:
|
| 693 |
+
with open(config.log,'a+') as fl:
|
| 694 |
+
print(f"Backtranslation {n_bt+1} of {config.NUM_BACKTRANSLATION_TIMES}--------------",file=fl)
|
| 695 |
+
config.bt_time = n_bt+1
|
| 696 |
+
save_bt_file_path = os.path.join(config.bt_data_dir,'bt'+str(n_bt+1)+'.json')
|
| 697 |
+
if not os.path.exists(save_bt_file_path):
|
| 698 |
+
mono_data = mono_data_(config)
|
| 699 |
+
start_time = time.time()
|
| 700 |
+
if config.use_multiprocessing:
|
| 701 |
+
if config.verbose:
|
| 702 |
+
with open(config.log,'a+') as fl:
|
| 703 |
+
print(f"Using multiprocessing on {config.num_cores} processes",file=fl)
|
| 704 |
+
if __name__ == "__main__":
|
| 705 |
+
model.share_memory()
|
| 706 |
+
with parallel_backend('loky'):
|
| 707 |
+
bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in tqdm(enumerate(mono_data)))
|
| 708 |
+
else:
|
| 709 |
+
bt_data = [{'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']} for t in tqdm(mono_data)]
|
| 710 |
+
with open(config.log,'a+') as fl:
|
| 711 |
+
print(f'Time taken for backtranslation of data: {beautify_time(time.time()-start_time)}',file=fl)
|
| 712 |
+
with open(save_bt_file_path,'w') as fp:
|
| 713 |
+
json.dump(bt_data,fp)
|
| 714 |
+
|
| 715 |
+
else:
|
| 716 |
+
with open(save_bt_file_path,'r') as f:
|
| 717 |
+
bt_data = json.load(f)
|
| 718 |
+
with open(config.log,'a+') as fl:
|
| 719 |
+
print('-'*15+'Printing 5 random BT Data'+'-'*15,file=fl)
|
| 720 |
+
ids_print = random.sample([i for i in range(len(bt_data))],5)
|
| 721 |
+
with open(config.log,'a+') as fl:
|
| 722 |
+
for ids_print_ in ids_print:
|
| 723 |
+
|
| 724 |
+
print(bt_data[ids_print_],file=fl)
|
| 725 |
+
|
| 726 |
+
augmented_dataset = train_dataset + bt_data + mono_data_noise(config) #mono_data_noise adds denoising objective
|
| 727 |
+
random.shuffle(augmented_dataset)
|
| 728 |
+
|
| 729 |
+
with open(config.log,'a+') as fl:
|
| 730 |
+
print(f'New length of dataset: {len(augmented_dataset)}',file=fl)
|
| 731 |
+
|
| 732 |
+
n_batches = int(np.ceil(len(augmented_dataset) / config.batch_size))
|
| 733 |
+
total_steps = config.n_bt_epochs * n_batches
|
| 734 |
+
n_warmup_steps = int(total_steps * 0.01)
|
| 735 |
+
|
| 736 |
+
#scheduler = get_linear_schedule_with_warmup(optimizer, n_warmup_steps, total_steps)
|
| 737 |
+
#scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=config.lr, max_lr=0.001,cycle_momentum=False)
|
| 738 |
+
|
| 739 |
+
train(config,config.n_bt_epochs,optimizer,tokenizer,augmented_dataset,dev_dataset,n_batches,model,save_with_bt=True)
|
| 740 |
+
|
| 741 |
+
if config.verbose:
|
| 742 |
+
with open(config.log,'a+') as fl:
|
| 743 |
+
print('Evaluaton...',file=fl)
|
| 744 |
+
do_evaluation(config,tokenizer,model,dev_dataset)
|
| 745 |
+
|
| 746 |
+
config.state_dict_check['epoch']=-1
|
| 747 |
+
config.state_dict_check['batch_idx']=0
|
| 748 |
+
with open(config.log,'a+') as fl:
|
| 749 |
+
print('---------------End of Backtranslation---------------',file=fl)
|
| 750 |
+
|
| 751 |
+
with open(config.log,'a+') as fl:
|
| 752 |
+
print('---------------End of Training---------------',file=fl)
|
| 753 |
+
config.now_on_bt=False
|
| 754 |
+
config.now_on_test=True
|
| 755 |
+
with open(config.log,'a+') as fl:
|
| 756 |
+
print('Evaluating on test set',file=fl)
|
| 757 |
+
test_dataset = make_dataset(config,'test')
|
| 758 |
+
with open(config.log,'a+') as fl:
|
| 759 |
+
print(f"Length of test dataset: {len(test_dataset)}",file=fl)
|
| 760 |
+
do_evaluation(config,tokenizer,model,test_dataset)
|
| 761 |
+
|
| 762 |
+
with open(config.log,'a+') as fl:
|
| 763 |
+
print("ALL DONE",file=fl)
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
def load_params(args: dict) -> dict:
|
| 767 |
+
"""
|
| 768 |
+
Load the parameters passed to `translate`
|
| 769 |
+
"""
|
| 770 |
+
#if not os.path.exists(args['checkpoint']):
|
| 771 |
+
# raise Exception(f'Checkpoint file does not exist')
|
| 772 |
+
|
| 773 |
+
params = {}
|
| 774 |
+
model_repo = 'google/mt5-base'
|
| 775 |
+
LANG_TOKEN_MAPPING = {
|
| 776 |
+
'ig': '<ig>',
|
| 777 |
+
'fon': '<fon>',
|
| 778 |
+
'en': '<en>',
|
| 779 |
+
'fr': '<fr>',
|
| 780 |
+
'rw':'<rw>',
|
| 781 |
+
'yo':'<yo>',
|
| 782 |
+
'xh':'<xh>',
|
| 783 |
+
'sw':'<sw>'
|
| 784 |
+
}
|
| 785 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
| 786 |
+
|
| 787 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_repo)
|
| 788 |
+
|
| 789 |
+
|
| 790 |
+
"""## Update tokenizer"""
|
| 791 |
+
special_tokens_dict = {'additional_special_tokens': list(LANG_TOKEN_MAPPING.values())}
|
| 792 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
| 793 |
+
|
| 794 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 795 |
+
|
| 796 |
+
state_dict = torch.load(args['checkpoint'],map_location=args['device'])
|
| 797 |
+
|
| 798 |
+
model.load_state_dict(state_dict['model_state_dict'])
|
| 799 |
+
|
| 800 |
+
model = model.to(args['device'])
|
| 801 |
+
|
| 802 |
+
#Load the model, load the tokenizer, max and min seq len
|
| 803 |
+
params['model'] = model
|
| 804 |
+
params['device'] = args['device']
|
| 805 |
+
params['max_seq_len'] = args['max_seq_len'] if 'max_seq_len' in args else 50
|
| 806 |
+
params['min_seq_len'] = args['min_seq_len'] if 'min_seq_len' in args else 2
|
| 807 |
+
params['tokenizer'] = tokenizer
|
| 808 |
+
params['num_beams'] = args['num_beams'] if 'num_beams' in args else 4
|
| 809 |
+
params['lang_token'] = LANG_TOKEN_MAPPING
|
| 810 |
+
params['truncation'] = args['truncation'] if 'truncation' in args else True
|
| 811 |
+
|
| 812 |
+
return params
|
| 813 |
+
|
| 814 |
+
def encode_input_str_translate(params,text, target_lang, tokenizer, seq_len):
|
| 815 |
+
|
| 816 |
+
target_lang_token = params['lang_token'][target_lang]
|
| 817 |
+
|
| 818 |
+
# Tokenize and add special tokens
|
| 819 |
+
input_ids = tokenizer.encode(
|
| 820 |
+
text = str(target_lang_token) + str(text),
|
| 821 |
+
return_tensors = 'pt',
|
| 822 |
+
padding = 'max_length',
|
| 823 |
+
truncation = params['truncation'] ,
|
| 824 |
+
max_length = seq_len)
|
| 825 |
+
|
| 826 |
+
return input_ids[0]
|
| 827 |
+
|
| 828 |
+
def translate(
|
| 829 |
+
params: dict,
|
| 830 |
+
sentence: str,
|
| 831 |
+
source_lang: str,
|
| 832 |
+
target_lang: str
|
| 833 |
+
) -> str:
|
| 834 |
+
"""
|
| 835 |
+
Given a sentence and its source and target sentences, this translates the sentence
|
| 836 |
+
to the given target sentence.
|
| 837 |
+
"""
|
| 838 |
+
|
| 839 |
+
|
| 840 |
+
if source_lang!='' and target_lang!='':
|
| 841 |
+
inp = [sentence]
|
| 842 |
+
|
| 843 |
+
input_tokens = [encode_input_str_translate(params,text = inp[i],target_lang = target_lang,tokenizer = params['tokenizer'],seq_len =params['max_seq_len']).unsqueeze(0).to(params['device']) for i in range(len(inp))]
|
| 844 |
+
output = [params['model'].generate(input_ids, num_beams=params['num_beams'], num_return_sequences=1,max_length=params['max_seq_len'],min_length=params['min_seq_len']) for input_ids in input_tokens]
|
| 845 |
+
output = [params['tokenizer'].decode(out[0], skip_special_tokens=True) for out in tqdm(output)]
|
| 846 |
+
|
| 847 |
+
return output[0]
|
| 848 |
+
|
| 849 |
+
else:
|
| 850 |
+
return ''
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
if __name__=="__main__":
|
| 857 |
+
from argparse import ArgumentParser
|
| 858 |
+
import json
|
| 859 |
+
import os
|
| 860 |
+
|
| 861 |
+
|
| 862 |
+
parser = ArgumentParser('MMTArica Experiments')
|
| 863 |
+
|
| 864 |
+
parser.add_argument('-homepath', type=str, default=os.getcwd(),
|
| 865 |
+
help="Homepath directory. Where all experiments are saved and all \
|
| 866 |
+
necessary files/folders are saved. (default: current working directory)")
|
| 867 |
+
|
| 868 |
+
parser.add_argument('--prediction_path', type=str, default='./predictions',
|
| 869 |
+
help='directory path to save predictions (default: %(default)s)')
|
| 870 |
+
|
| 871 |
+
parser.add_argument('--model_name', type=str, default='mmt_translation',
|
| 872 |
+
help='Name of model (default: %(default)s)')
|
| 873 |
+
|
| 874 |
+
parser.add_argument('--bt_data_dir', type=str, default='btData',
|
| 875 |
+
help='Directory to save back-translation files (default: %(default)s)')
|
| 876 |
+
|
| 877 |
+
parser.add_argument('--parallel_dir', type=str, default='parallel',
|
| 878 |
+
help='name of directory where parallel corpora is saved')
|
| 879 |
+
|
| 880 |
+
parser.add_argument('--mono_dir', type=str, default='mono',
|
| 881 |
+
help='name of directory where monolingual files are saved (default: %(default)s)')
|
| 882 |
+
|
| 883 |
+
parser.add_argument('--log', type=str, default='train.log',
|
| 884 |
+
help='name of file to log experiments (default: %(default)s)')
|
| 885 |
+
|
| 886 |
+
parser.add_argument('--mono_data_limit', type=int, default=300,
|
| 887 |
+
help='limit of monolingual sentences to use for training (default: %(default)s)')
|
| 888 |
+
|
| 889 |
+
parser.add_argument('--mono_data_for_noise_limit', type=int, default=50,
|
| 890 |
+
help='limit of monolingual sentences to use for noise (default: %(default)s)')
|
| 891 |
+
|
| 892 |
+
parser.add_argument('--n_epochs', type=int, default=10,
|
| 893 |
+
help='number of training epochs (default: %(default)s)')
|
| 894 |
+
|
| 895 |
+
parser.add_argument('--n_bt_epochs', type=int, default=3,
|
| 896 |
+
help='number of backtranslation epochs (default: %(default)s)')
|
| 897 |
+
|
| 898 |
+
parser.add_argument('--batch_size', type=int, default=64,
|
| 899 |
+
help='batch size (default: %(default)s)')
|
| 900 |
+
|
| 901 |
+
parser.add_argument('--max_seq_len', type=int, default=50,
|
| 902 |
+
help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
|
| 903 |
+
|
| 904 |
+
parser.add_argument('--min_seq_len', type=int, default=2,
|
| 905 |
+
help='mnimum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
|
| 906 |
+
|
| 907 |
+
parser.add_argument('--checkpoint_freq', type=int, default=10_000,
|
| 908 |
+
help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
|
| 909 |
+
|
| 910 |
+
parser.add_argument('--lr', type=int, default=1e-4,
|
| 911 |
+
help='learning rate. (default: %(default)s)')
|
| 912 |
+
|
| 913 |
+
parser.add_argument('--print_freq', type=int, default=5_000,
|
| 914 |
+
help='frequency at which to print to log. (default: %(default)s)')
|
| 915 |
+
|
| 916 |
+
parser.add_argument('--use_multiprocessing', type=bool, default=False,
|
| 917 |
+
help='whether or not to use multiprocessing. (default: %(default)s)')
|
| 918 |
+
|
| 919 |
+
parser.add_argument('--num_pretrain_steps', type=int, default=20,
|
| 920 |
+
help='number of pretrain steps. (default: %(default)s)')
|
| 921 |
+
|
| 922 |
+
parser.add_argument('--num_backtranslation_steps', type=int, default=5,
|
| 923 |
+
help='number of pretrain steps. (default: %(default)s)')
|
| 924 |
+
|
| 925 |
+
parser.add_argument('--do_backtranslation', type=bool, default=True,
|
| 926 |
+
help='whether or not to do backtranslation during training. (default: %(default)s)')
|
| 927 |
+
|
| 928 |
+
parser.add_argument('--use_reconstruction', type=bool, default=True,
|
| 929 |
+
help='whether or not to use reconstruction during training. (default: %(default)s)')
|
| 930 |
+
|
| 931 |
+
parser.add_argument('--use_torch_data_parallel', type=bool, default=False,
|
| 932 |
+
help='whether or not to use torch data parallelism. (default: %(default)s)')
|
| 933 |
+
|
| 934 |
+
parser.add_argument('--gradient_accumulation_batch', type=int, default=4096//64,
|
| 935 |
+
help='batch size for gradient accumulation. (default: %(default)s)')
|
| 936 |
+
|
| 937 |
+
parser.add_argument('--num_beams', type=int, default=4,
|
| 938 |
+
help='number of beams to use for inference. (default: %(default)s)')
|
| 939 |
+
|
| 940 |
+
parser.add_argument('--patience', type=int, default=15_000_000,
|
| 941 |
+
help='patience for early stopping. (default: %(default)s)')
|
| 942 |
+
|
| 943 |
+
parser.add_argument('--drop_probability', type=float, default=0.2,
|
| 944 |
+
help='drop probability for reconstruction. (default: %(default)s)')
|
| 945 |
+
|
| 946 |
+
parser.add_argument('--dropout', type=float, default=0.1,
|
| 947 |
+
help='dropout probability. (default: %(default)s)')
|
| 948 |
+
|
| 949 |
+
parser.add_argument('--num_swaps', type=int, default=3,
|
| 950 |
+
help='number of word swaps to perform during reconstruction. (default: %(default)s)')
|
| 951 |
+
|
| 952 |
+
parser.add_argument('--verbose', type=bool, default=True,
|
| 953 |
+
help='whether or not to print information during experiments. (default: %(default)s)')
|
| 954 |
+
|
| 955 |
+
args = parser.parse_args()
|
| 956 |
+
|
| 957 |
+
|
| 958 |
+
main(args)
|
| 959 |
+
|
| 960 |
+
|
| 961 |
+
|