Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,572 @@
|
|
1 |
import sys
|
|
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import sys
|
2 |
+
import os
|
3 |
|
4 |
+
argv = os.environ.get('VALLE_ARGS', None)
|
5 |
|
6 |
+
if argv:
|
7 |
+
sys.argv = sys.argv + argv.split(" ")
|
8 |
+
|
9 |
+
import re
|
10 |
+
import math
|
11 |
+
import argparse
|
12 |
+
import random
|
13 |
+
import tempfile
|
14 |
+
import functools
|
15 |
+
import spaces
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
import torchaudio
|
21 |
+
import gradio as gr
|
22 |
+
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
from vall_e.inference import TTS, cfg
|
26 |
+
from vall_e.train import train
|
27 |
+
from vall_e.utils import get_devices, setup_logging, timer
|
28 |
+
from vall_e.utils.io import json_read, json_stringify
|
29 |
+
from vall_e.emb.qnt import decode_to_wave
|
30 |
+
from vall_e.data import get_lang_symmap, get_random_prompt
|
31 |
+
from vall_e.models.arch import AVAILABLE_ATTENTIONS
|
32 |
+
|
33 |
+
try:
|
34 |
+
import spaces
|
35 |
+
|
36 |
+
USING_SPACES = True
|
37 |
+
spaces_zerogpu_decorator = spaces.GPU
|
38 |
+
except Exception as e:
|
39 |
+
USING_SPACES = False
|
40 |
+
def spaces_zerogpu_decorator(func):
|
41 |
+
return func
|
42 |
+
|
43 |
+
is_windows = sys.platform.startswith("win")
|
44 |
+
|
45 |
+
tts = None
|
46 |
+
|
47 |
+
layout = {}
|
48 |
+
layout["inference_tts"] = {}
|
49 |
+
layout["inference_stt"] = {}
|
50 |
+
layout["training"] = {}
|
51 |
+
layout["dataset"] = {}
|
52 |
+
layout["settings"] = {}
|
53 |
+
|
54 |
+
for k in layout.keys():
|
55 |
+
layout[k]["inputs"] = { "progress": None }
|
56 |
+
layout[k]["outputs"] = {}
|
57 |
+
layout[k]["buttons"] = {}
|
58 |
+
|
59 |
+
# there's got to be a better way to go about this
|
60 |
+
def gradio_wrapper(inputs):
|
61 |
+
def decorated(fun):
|
62 |
+
@functools.wraps(fun)
|
63 |
+
def wrapped_function(*args, **kwargs):
|
64 |
+
for i, key in enumerate(inputs):
|
65 |
+
kwargs[key] = args[i]
|
66 |
+
try:
|
67 |
+
return fun(**kwargs)
|
68 |
+
except Exception as e:
|
69 |
+
raise gr.Error(str(e))
|
70 |
+
return wrapped_function
|
71 |
+
return decorated
|
72 |
+
|
73 |
+
# returns a list of models, assuming the models are placed under ./training/ or ./models/ or ./data/models/
|
74 |
+
def get_model_paths( paths=[Path("./training/"), Path("./models/"), Path("./data/models/")] ):
|
75 |
+
configs = []
|
76 |
+
|
77 |
+
for path in paths:
|
78 |
+
if not path.exists():
|
79 |
+
continue
|
80 |
+
|
81 |
+
for yaml in path.glob("**/*.yaml"):
|
82 |
+
if "/logs/" in str(yaml):
|
83 |
+
continue
|
84 |
+
configs.append( yaml )
|
85 |
+
|
86 |
+
for sft in path.glob("**/*.sft"):
|
87 |
+
if "/logs/" in str(sft):
|
88 |
+
continue
|
89 |
+
configs.append( sft )
|
90 |
+
|
91 |
+
if is_windows:
|
92 |
+
configs = [ str(p) for p in configs ]
|
93 |
+
|
94 |
+
return configs
|
95 |
+
|
96 |
+
def get_dtypes():
|
97 |
+
return ["float32", "float16", "bfloat16", "float8_e5m2", "float8_e4m3fn", "auto"]
|
98 |
+
|
99 |
+
def get_attentions():
|
100 |
+
return AVAILABLE_ATTENTIONS + ["auto"]
|
101 |
+
|
102 |
+
#@gradio_wrapper(inputs=layout["settings"]["inputs"].keys())
|
103 |
+
def load_model( config, device, dtype, attention ):
|
104 |
+
gr.Info(f"Loading: {config}")
|
105 |
+
try:
|
106 |
+
init_tts( config=Path(config), restart=True, device=device, dtype=dtype, attention=attention )
|
107 |
+
except Exception as e:
|
108 |
+
raise gr.Error(e)
|
109 |
+
gr.Info(f"Loaded model")
|
110 |
+
|
111 |
+
def get_speakers():
|
112 |
+
return cfg.dataset.training
|
113 |
+
|
114 |
+
def get_languages():
|
115 |
+
return get_lang_symmap().keys()
|
116 |
+
|
117 |
+
#@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys())
|
118 |
+
def load_sample( speaker ):
|
119 |
+
metadata_path = cfg.metadata_dir / f'{speaker}.json'
|
120 |
+
metadata = json_read( metadata_path )
|
121 |
+
if not metadata:
|
122 |
+
raise gr.Error(f"Metadata not found: {metadata_path}")
|
123 |
+
|
124 |
+
key = random.choice( list(metadata.keys()) )
|
125 |
+
path = cfg.data_dir / speaker / f'{key}.enc' # to-do: get proper file extension
|
126 |
+
data = json_stringify( metadata[key], pretty=True )
|
127 |
+
wav, sr = None, None
|
128 |
+
|
129 |
+
if path.exists():
|
130 |
+
artifact = np.load(path, allow_pickle=True)[()]
|
131 |
+
codes = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=cfg.device)
|
132 |
+
wav, sr = decode_to_wave( codes )
|
133 |
+
wav = wav.squeeze(0).cpu().numpy()
|
134 |
+
|
135 |
+
return data, (sr, wav)
|
136 |
+
|
137 |
+
def init_tts(config=None, lora=None, restart=False, device="cuda", dtype="auto", attention=None):
|
138 |
+
global tts
|
139 |
+
|
140 |
+
if tts is not None:
|
141 |
+
if not restart:
|
142 |
+
return tts
|
143 |
+
|
144 |
+
del tts
|
145 |
+
tts = None
|
146 |
+
|
147 |
+
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
|
148 |
+
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
|
149 |
+
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
|
150 |
+
parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too
|
151 |
+
parser.add_argument("--device", type=str, default=device)
|
152 |
+
parser.add_argument("--amp", action="store_true")
|
153 |
+
parser.add_argument("--dtype", type=str, default=dtype)
|
154 |
+
parser.add_argument("--attention", type=str, default=attention)
|
155 |
+
args, unknown = parser.parse_known_args()
|
156 |
+
|
157 |
+
if config:
|
158 |
+
if config.suffix == ".yaml" and not args.yaml:
|
159 |
+
args.yaml = config
|
160 |
+
elif config.suffix == ".sft" and not args.model:
|
161 |
+
args.model = config
|
162 |
+
|
163 |
+
if lora and not args.lora:
|
164 |
+
args.lora = lora
|
165 |
+
|
166 |
+
if args.yaml:
|
167 |
+
config = args.yaml
|
168 |
+
elif args.model:
|
169 |
+
config = args.model
|
170 |
+
|
171 |
+
if args.lora:
|
172 |
+
lora = args.lora
|
173 |
+
|
174 |
+
tts = TTS( config=config, lora=args.lora, device=args.device, dtype=args.dtype if args.dtype != "auto" else None, amp=args.amp, attention=args.attention )
|
175 |
+
return tts
|
176 |
+
|
177 |
+
@spaces_zerogpu_decorator
|
178 |
+
@gradio_wrapper(inputs=layout["inference_tts"]["inputs"].keys())
|
179 |
+
def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
180 |
+
if not cfg.models:
|
181 |
+
raise Exception("No model loaded.")
|
182 |
+
|
183 |
+
if kwargs.pop("dynamic-sampling", False):
|
184 |
+
kwargs['min-ar-temp'] = 0.01 if kwargs['ar-temp'] > 0.01 else 0.0
|
185 |
+
kwargs['min-nar-temp'] = 0.0 # 0.85 if kwargs['nar-temp'] > 0.85 else 0.0 # should probably disable it for the NAR
|
186 |
+
else:
|
187 |
+
kwargs['min-ar-temp'] = -1
|
188 |
+
kwargs['min-nar-temp'] = -1
|
189 |
+
|
190 |
+
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
|
191 |
+
# I'm very sure I can procedurally generate this list
|
192 |
+
parser.add_argument("--text", type=str, default=kwargs["text"])
|
193 |
+
parser.add_argument("--task", type=str, default="tts")
|
194 |
+
parser.add_argument("--references", type=str, default=kwargs["reference"])
|
195 |
+
parser.add_argument("--language", type=str, default=kwargs["language"])
|
196 |
+
parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"])
|
197 |
+
parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"] if cfg.experimental else False)
|
198 |
+
parser.add_argument("--max-ar-steps", type=int, default=int(kwargs["max-seconds"]*cfg.dataset.frames_per_second))
|
199 |
+
parser.add_argument("--max-nar-levels", type=int, default=kwargs["max-nar-levels"] if cfg.experimental else 0)
|
200 |
+
parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"])
|
201 |
+
parser.add_argument("--nar-temp", type=float, default=kwargs["nar-temp"])
|
202 |
+
parser.add_argument("--min-ar-temp", type=float, default=kwargs["min-ar-temp"])
|
203 |
+
parser.add_argument("--min-nar-temp", type=float, default=kwargs["min-nar-temp"])
|
204 |
+
parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"] if cfg.experimental else 0)
|
205 |
+
parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
|
206 |
+
parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
|
207 |
+
parser.add_argument("--min-p", type=float, default=kwargs["min-p"])
|
208 |
+
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
|
209 |
+
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
|
210 |
+
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
|
211 |
+
parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"])
|
212 |
+
parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"])
|
213 |
+
parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"])
|
214 |
+
parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"])
|
215 |
+
parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"])
|
216 |
+
parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"])
|
217 |
+
parser.add_argument("--entropix-sampling", action="store_true")
|
218 |
+
parser.add_argument("--layer-skip", action="store_true")
|
219 |
+
parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"] if cfg.experimental else -1)
|
220 |
+
parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"] if cfg.experimental else 0.1)
|
221 |
+
parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"] if cfg.experimental else 0.1)
|
222 |
+
parser.add_argument("--refine-on-stop", action="store_true")
|
223 |
+
args, unknown = parser.parse_known_args()
|
224 |
+
|
225 |
+
if is_windows:
|
226 |
+
tmp = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
|
227 |
+
else:
|
228 |
+
tmp = tempfile.NamedTemporaryFile(suffix='.wav')
|
229 |
+
|
230 |
+
"""
|
231 |
+
if not args.references:
|
232 |
+
raise Exception("No reference audio provided.")
|
233 |
+
"""
|
234 |
+
|
235 |
+
if kwargs.pop("entropix-sampling", False):
|
236 |
+
args.entropix_sampling = True
|
237 |
+
|
238 |
+
if kwargs.pop("layer-skip", False):
|
239 |
+
args.layer_skip = True
|
240 |
+
|
241 |
+
if kwargs.pop("refine-on-stop", False):
|
242 |
+
args.refine_on_stop = True
|
243 |
+
|
244 |
+
tts = init_tts()
|
245 |
+
|
246 |
+
gr.Info("Inferencing...")
|
247 |
+
|
248 |
+
with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t:
|
249 |
+
wav, sr = tts.inference(
|
250 |
+
text=args.text,
|
251 |
+
language=args.language,
|
252 |
+
task=args.task,
|
253 |
+
references=args.references.split(";") if args.references is not None else [],
|
254 |
+
out_path=tmp.name,
|
255 |
+
max_ar_steps=args.max_ar_steps,
|
256 |
+
max_nar_levels=args.max_nar_levels,
|
257 |
+
input_prompt_length=args.input_prompt_length,
|
258 |
+
input_prompt_prefix=args.input_prompt_prefix,
|
259 |
+
prefix_silence=args.prefix_silence,
|
260 |
+
ar_temp=args.ar_temp,
|
261 |
+
nar_temp=args.nar_temp,
|
262 |
+
min_ar_temp=args.min_ar_temp,
|
263 |
+
min_nar_temp=args.min_nar_temp,
|
264 |
+
top_p=args.top_p,
|
265 |
+
top_k=args.top_k,
|
266 |
+
min_p=args.min_p,
|
267 |
+
beam_width=args.beam_width,
|
268 |
+
repetition_penalty=args.repetition_penalty,
|
269 |
+
repetition_penalty_decay=args.repetition_penalty_decay,
|
270 |
+
length_penalty=args.length_penalty,
|
271 |
+
mirostat_tau=args.mirostat_tau,
|
272 |
+
mirostat_eta=args.mirostat_eta,
|
273 |
+
dry_multiplier=args.dry_multiplier,
|
274 |
+
dry_base=args.dry_base,
|
275 |
+
dry_allowed_length=args.dry_allowed_length,
|
276 |
+
entropix_sampling=args.entropix_sampling,
|
277 |
+
|
278 |
+
layer_skip=args.layer_skip,
|
279 |
+
layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
|
280 |
+
layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
|
281 |
+
refine_on_stop=args.refine_on_stop,
|
282 |
+
)
|
283 |
+
|
284 |
+
wav = wav.squeeze(0).cpu().numpy()
|
285 |
+
return (sr, wav)
|
286 |
+
|
287 |
+
@gradio_wrapper(inputs=layout["inference_stt"]["inputs"].keys())
|
288 |
+
def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
289 |
+
if not cfg.models:
|
290 |
+
raise Exception("No model loaded.")
|
291 |
+
|
292 |
+
if kwargs.pop("dynamic-sampling", False):
|
293 |
+
kwargs['min-ar-temp'] = 0.85 if kwargs['ar-temp'] > 0.85 else 0.0
|
294 |
+
else:
|
295 |
+
kwargs['min-ar-temp'] = -1
|
296 |
+
|
297 |
+
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
|
298 |
+
# I'm very sure I can procedurally generate this list
|
299 |
+
parser.add_argument("--references", type=str, default=kwargs["reference"])
|
300 |
+
parser.add_argument("--language", type=str, default=kwargs["language"])
|
301 |
+
parser.add_argument("--max-ar-steps", type=int, default=0)
|
302 |
+
parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"])
|
303 |
+
parser.add_argument("--min-ar-temp", type=float, default=kwargs["min-ar-temp"])
|
304 |
+
parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
|
305 |
+
parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
|
306 |
+
parser.add_argument("--min-p", type=int, default=kwargs["min-p"])
|
307 |
+
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
|
308 |
+
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
|
309 |
+
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
|
310 |
+
parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"])
|
311 |
+
parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"])
|
312 |
+
parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"])
|
313 |
+
parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"])
|
314 |
+
parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"])
|
315 |
+
parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"])
|
316 |
+
parser.add_argument("--entropix-sampling", action="store_true")
|
317 |
+
args, unknown = parser.parse_known_args()
|
318 |
+
|
319 |
+
|
320 |
+
"""
|
321 |
+
if not args.references:
|
322 |
+
raise Exception("No reference audio provided.")
|
323 |
+
"""
|
324 |
+
|
325 |
+
args.references = args.references.split(";") if args.references is not None else []
|
326 |
+
if args.max_ar_steps == 0:
|
327 |
+
for i, path in enumerate( args.references ):
|
328 |
+
metadata = torchaudio.info(path)
|
329 |
+
duration = metadata.num_frames / metadata.sample_rate
|
330 |
+
args.max_ar_steps += duration
|
331 |
+
args.max_ar_steps = math.floor( args.max_ar_steps * 20 ) # assume 20 tokens per second
|
332 |
+
|
333 |
+
if kwargs.pop("entropix-sampling", False):
|
334 |
+
args.entropix_sampling = True
|
335 |
+
|
336 |
+
tts = init_tts()
|
337 |
+
|
338 |
+
gr.Info("Inferencing...")
|
339 |
+
with timer("Inferenced in") as t:
|
340 |
+
text = tts.inference(
|
341 |
+
text="",
|
342 |
+
language=args.language,
|
343 |
+
task="stt",
|
344 |
+
references=args.references,
|
345 |
+
max_ar_steps=args.max_ar_steps,
|
346 |
+
ar_temp=args.ar_temp,
|
347 |
+
min_ar_temp=args.min_ar_temp,
|
348 |
+
top_p=args.top_p,
|
349 |
+
top_k=args.top_k,
|
350 |
+
min_p=args.min_p,
|
351 |
+
repetition_penalty=args.repetition_penalty,
|
352 |
+
repetition_penalty_decay=args.repetition_penalty_decay,
|
353 |
+
length_penalty=args.length_penalty,
|
354 |
+
mirostat_tau=args.mirostat_tau,
|
355 |
+
mirostat_eta=args.mirostat_eta,
|
356 |
+
dry_multiplier=args.dry_multiplier,
|
357 |
+
dry_base=args.dry_base,
|
358 |
+
dry_allowed_length=args.dry_allowed_length,
|
359 |
+
entropix_sampling=args.entropix_sampling,
|
360 |
+
)
|
361 |
+
|
362 |
+
return text
|
363 |
+
|
364 |
+
"""
|
365 |
+
@gradio_wrapper(inputs=layout["training"]["inputs"].keys())
|
366 |
+
def do_training( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
367 |
+
while True:
|
368 |
+
metrics = next(it)
|
369 |
+
yield metrics
|
370 |
+
"""
|
371 |
+
|
372 |
+
# setup args
|
373 |
+
parser = argparse.ArgumentParser(allow_abbrev=False)
|
374 |
+
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
|
375 |
+
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
|
376 |
+
parser.add_argument("--listen", default=None, help="Path for Gradio to listen on")
|
377 |
+
parser.add_argument("--share", action="store_true")
|
378 |
+
parser.add_argument("--render_markdown", action="store_true", default="VALLE_YAML" in os.environ)
|
379 |
+
args, unknown = parser.parse_known_args()
|
380 |
+
|
381 |
+
args.listen_host = None
|
382 |
+
args.listen_port = None
|
383 |
+
args.listen_path = None
|
384 |
+
if args.listen:
|
385 |
+
try:
|
386 |
+
match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0]
|
387 |
+
|
388 |
+
args.listen_host = match[0] if match[0] != "" else "127.0.0.1"
|
389 |
+
args.listen_port = match[1] if match[1] != "" else None
|
390 |
+
args.listen_path = match[2] if match[2] != "" else "/"
|
391 |
+
except Exception as e:
|
392 |
+
pass
|
393 |
+
|
394 |
+
if args.listen_port is not None:
|
395 |
+
args.listen_port = int(args.listen_port)
|
396 |
+
if args.listen_port == 0:
|
397 |
+
args.listen_port = None
|
398 |
+
|
399 |
+
# setup gradio
|
400 |
+
ui = gr.Blocks()
|
401 |
+
with ui:
|
402 |
+
with gr.Tab("Inference"):
|
403 |
+
with gr.Tab("Text-to-Speech"):
|
404 |
+
with gr.Row():
|
405 |
+
with gr.Column(scale=8):
|
406 |
+
layout["inference_tts"]["inputs"]["text"] = gr.Textbox(lines=5, value=get_random_prompt, label="Input Prompt")
|
407 |
+
with gr.Row():
|
408 |
+
with gr.Column(scale=1):
|
409 |
+
layout["inference_tts"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS")
|
410 |
+
# layout["inference_tts"]["stop"] = gr.Button(value="Stop")
|
411 |
+
layout["inference_tts"]["outputs"]["output"] = gr.Audio(label="Output")
|
412 |
+
layout["inference_tts"]["buttons"]["inference"] = gr.Button(value="Inference")
|
413 |
+
with gr.Column(scale=7):
|
414 |
+
with gr.Tab("Basic Settings"):
|
415 |
+
with gr.Row():
|
416 |
+
layout["inference_tts"]["inputs"]["max-seconds"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="Limits how many steps to perform in the AR pass.")
|
417 |
+
layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=5.0, minimum=0.0, maximum=12.0, step=0.05, label="Input Prompt Repeat/Trim Length", info="Repeats and trims the input prompt down to X seconds. Set 0 to disable.")
|
418 |
+
with gr.Row():
|
419 |
+
layout["inference_tts"]["inputs"]["ar-temp"] = gr.Slider(value=0.5, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy* sample)")
|
420 |
+
layout["inference_tts"]["inputs"]["nar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)")
|
421 |
+
with gr.Row():
|
422 |
+
layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
|
423 |
+
with gr.Tab("Sampler Settings"):
|
424 |
+
with gr.Row():
|
425 |
+
layout["inference_tts"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
|
426 |
+
layout["inference_tts"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
|
427 |
+
layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P")
|
428 |
+
layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
|
429 |
+
with gr.Row():
|
430 |
+
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.5, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
|
431 |
+
layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
432 |
+
layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
433 |
+
with gr.Row():
|
434 |
+
layout["inference_tts"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
|
435 |
+
layout["inference_tts"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
|
436 |
+
with gr.Row():
|
437 |
+
layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
|
438 |
+
layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
|
439 |
+
layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
|
440 |
+
if cfg.experimental:
|
441 |
+
with gr.Tab("Experimental Settings"):
|
442 |
+
with gr.Row():
|
443 |
+
layout["inference_tts"]["inputs"]["max-nar-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
|
444 |
+
layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.")
|
445 |
+
with gr.Row():
|
446 |
+
layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.")
|
447 |
+
with gr.Row():
|
448 |
+
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
449 |
+
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
|
450 |
+
with gr.Row():
|
451 |
+
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
|
452 |
+
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
|
453 |
+
with gr.Row():
|
454 |
+
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
|
455 |
+
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
|
456 |
+
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
|
457 |
+
|
458 |
+
|
459 |
+
layout["inference_tts"]["buttons"]["inference"].click(
|
460 |
+
fn=do_inference_tts,
|
461 |
+
inputs=[ x for x in layout["inference_tts"]["inputs"].values() if x is not None],
|
462 |
+
outputs=[ x for x in layout["inference_tts"]["outputs"].values() if x is not None]
|
463 |
+
)
|
464 |
+
|
465 |
+
with gr.Tab("Speech to Text"):
|
466 |
+
with gr.Row():
|
467 |
+
with gr.Column(scale=8):
|
468 |
+
layout["inference_stt"]["outputs"]["ouput"] = gr.Textbox(lines=1, label="Output Transcription")
|
469 |
+
with gr.Row():
|
470 |
+
with gr.Column(scale=1):
|
471 |
+
layout["inference_stt"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS")
|
472 |
+
# layout["inference_stt"]["stop"] = gr.Button(value="Stop")
|
473 |
+
layout["inference_stt"]["buttons"]["inference"] = gr.Button(value="Inference")
|
474 |
+
with gr.Column(scale=7):
|
475 |
+
with gr.Tab("Basic Settings"):
|
476 |
+
with gr.Row():
|
477 |
+
layout["inference_stt"]["inputs"]["ar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)")
|
478 |
+
with gr.Row():
|
479 |
+
layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
480 |
+
layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
|
481 |
+
with gr.Tab("Sampler Settings"):
|
482 |
+
with gr.Row():
|
483 |
+
layout["inference_stt"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
|
484 |
+
layout["inference_stt"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
|
485 |
+
layout["inference_stt"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P")
|
486 |
+
layout["inference_stt"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
|
487 |
+
with gr.Row():
|
488 |
+
layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.25, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
|
489 |
+
layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
490 |
+
layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
491 |
+
with gr.Row():
|
492 |
+
layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
|
493 |
+
layout["inference_stt"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
|
494 |
+
with gr.Row():
|
495 |
+
layout["inference_stt"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
|
496 |
+
layout["inference_stt"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
|
497 |
+
layout["inference_stt"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
|
498 |
+
|
499 |
+
layout["inference_stt"]["buttons"]["inference"].click(
|
500 |
+
fn=do_inference_stt,
|
501 |
+
inputs=[ x for x in layout["inference_stt"]["inputs"].values() if x is not None],
|
502 |
+
outputs=[ x for x in layout["inference_stt"]["outputs"].values() if x is not None]
|
503 |
+
)
|
504 |
+
|
505 |
+
|
506 |
+
"""
|
507 |
+
with gr.Tab("Training"):
|
508 |
+
with gr.Row():
|
509 |
+
with gr.Column(scale=1):
|
510 |
+
layout["training"]["outputs"]["console"] = gr.Textbox(lines=8, label="Console Log")
|
511 |
+
with gr.Row():
|
512 |
+
with gr.Column(scale=1):
|
513 |
+
layout["training"]["buttons"]["train"] = gr.Button(value="Train")
|
514 |
+
|
515 |
+
layout["training"]["buttons"]["train"].click(
|
516 |
+
fn=do_training,
|
517 |
+
outputs=[ x for x in layout["training"]["outputs"].values() if x is not None],
|
518 |
+
)
|
519 |
+
"""
|
520 |
+
|
521 |
+
if not USING_SPACES:
|
522 |
+
with gr.Tab("Dataset"):
|
523 |
+
with gr.Row():
|
524 |
+
with gr.Column(scale=7):
|
525 |
+
layout["dataset"]["outputs"]["transcription"] = gr.Textbox(lines=5, label="Sample Metadata")
|
526 |
+
with gr.Column(scale=1):
|
527 |
+
layout["dataset"]["inputs"]["speaker"] = gr.Dropdown(choices=get_speakers(), label="Speakers")
|
528 |
+
layout["dataset"]["outputs"]["audio"] = gr.Audio(label="Output")
|
529 |
+
layout["dataset"]["buttons"]["sample"] = gr.Button(value="Sample")
|
530 |
+
|
531 |
+
layout["dataset"]["buttons"]["sample"].click(
|
532 |
+
fn=load_sample,
|
533 |
+
inputs=[ x for x in layout["dataset"]["inputs"].values() if x is not None],
|
534 |
+
outputs=[ x for x in layout["dataset"]["outputs"].values() if x is not None],
|
535 |
+
)
|
536 |
+
|
537 |
+
if not USING_SPACES:
|
538 |
+
with gr.Tab("Settings"):
|
539 |
+
with gr.Row():
|
540 |
+
with gr.Column(scale=7):
|
541 |
+
with gr.Row():
|
542 |
+
layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model")
|
543 |
+
layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device")
|
544 |
+
layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision")
|
545 |
+
layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions")
|
546 |
+
with gr.Column(scale=1):
|
547 |
+
layout["settings"]["buttons"]["load"] = gr.Button(value="Load Model")
|
548 |
+
|
549 |
+
layout["settings"]["buttons"]["load"].click(
|
550 |
+
fn=load_model,
|
551 |
+
inputs=[ x for x in layout["settings"]["inputs"].values() if x is not None],
|
552 |
+
outputs=[ x for x in layout["settings"]["outputs"].values() if x is not None],
|
553 |
+
)
|
554 |
+
|
555 |
+
if os.path.exists("README.md") and args.render_markdown:
|
556 |
+
md = open("README.md", "r", encoding="utf-8").read()
|
557 |
+
# remove HF's metadata
|
558 |
+
if md.startswith("---\n"):
|
559 |
+
md = "".join(md.split("---")[2:])
|
560 |
+
gr.Markdown(md)
|
561 |
+
|
562 |
+
def start( lock=True ):
|
563 |
+
setup_logging()
|
564 |
+
|
565 |
+
if not USING_SPACES:
|
566 |
+
ui.queue(max_size=8)
|
567 |
+
ui.launch(share=args.share, server_name=args.listen_host, server_port=args.listen_port, prevent_thread_lock=not lock)
|
568 |
+
else:
|
569 |
+
ui.queue().launch()
|
570 |
+
|
571 |
+
if __name__ == "__main__":
|
572 |
+
start()
|