ecker commited on
Commit
c1517ec
·
verified ·
1 Parent(s): f28d5f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +569 -2
app.py CHANGED
@@ -1,5 +1,572 @@
1
  import sys
 
2
 
3
- # sys.argv = sys.argv + "--dtype=float32 --device=cuda".split(" ")
4
 
5
- from vall_e.webui import ui
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import sys
2
+ import os
3
 
4
+ argv = os.environ.get('VALLE_ARGS', None)
5
 
6
+ if argv:
7
+ sys.argv = sys.argv + argv.split(" ")
8
+
9
+ import re
10
+ import math
11
+ import argparse
12
+ import random
13
+ import tempfile
14
+ import functools
15
+ import spaces
16
+
17
+ import torch
18
+ import numpy as np
19
+
20
+ import torchaudio
21
+ import gradio as gr
22
+
23
+ from pathlib import Path
24
+
25
+ from vall_e.inference import TTS, cfg
26
+ from vall_e.train import train
27
+ from vall_e.utils import get_devices, setup_logging, timer
28
+ from vall_e.utils.io import json_read, json_stringify
29
+ from vall_e.emb.qnt import decode_to_wave
30
+ from vall_e.data import get_lang_symmap, get_random_prompt
31
+ from vall_e.models.arch import AVAILABLE_ATTENTIONS
32
+
33
+ try:
34
+ import spaces
35
+
36
+ USING_SPACES = True
37
+ spaces_zerogpu_decorator = spaces.GPU
38
+ except Exception as e:
39
+ USING_SPACES = False
40
+ def spaces_zerogpu_decorator(func):
41
+ return func
42
+
43
+ is_windows = sys.platform.startswith("win")
44
+
45
+ tts = None
46
+
47
+ layout = {}
48
+ layout["inference_tts"] = {}
49
+ layout["inference_stt"] = {}
50
+ layout["training"] = {}
51
+ layout["dataset"] = {}
52
+ layout["settings"] = {}
53
+
54
+ for k in layout.keys():
55
+ layout[k]["inputs"] = { "progress": None }
56
+ layout[k]["outputs"] = {}
57
+ layout[k]["buttons"] = {}
58
+
59
+ # there's got to be a better way to go about this
60
+ def gradio_wrapper(inputs):
61
+ def decorated(fun):
62
+ @functools.wraps(fun)
63
+ def wrapped_function(*args, **kwargs):
64
+ for i, key in enumerate(inputs):
65
+ kwargs[key] = args[i]
66
+ try:
67
+ return fun(**kwargs)
68
+ except Exception as e:
69
+ raise gr.Error(str(e))
70
+ return wrapped_function
71
+ return decorated
72
+
73
+ # returns a list of models, assuming the models are placed under ./training/ or ./models/ or ./data/models/
74
+ def get_model_paths( paths=[Path("./training/"), Path("./models/"), Path("./data/models/")] ):
75
+ configs = []
76
+
77
+ for path in paths:
78
+ if not path.exists():
79
+ continue
80
+
81
+ for yaml in path.glob("**/*.yaml"):
82
+ if "/logs/" in str(yaml):
83
+ continue
84
+ configs.append( yaml )
85
+
86
+ for sft in path.glob("**/*.sft"):
87
+ if "/logs/" in str(sft):
88
+ continue
89
+ configs.append( sft )
90
+
91
+ if is_windows:
92
+ configs = [ str(p) for p in configs ]
93
+
94
+ return configs
95
+
96
+ def get_dtypes():
97
+ return ["float32", "float16", "bfloat16", "float8_e5m2", "float8_e4m3fn", "auto"]
98
+
99
+ def get_attentions():
100
+ return AVAILABLE_ATTENTIONS + ["auto"]
101
+
102
+ #@gradio_wrapper(inputs=layout["settings"]["inputs"].keys())
103
+ def load_model( config, device, dtype, attention ):
104
+ gr.Info(f"Loading: {config}")
105
+ try:
106
+ init_tts( config=Path(config), restart=True, device=device, dtype=dtype, attention=attention )
107
+ except Exception as e:
108
+ raise gr.Error(e)
109
+ gr.Info(f"Loaded model")
110
+
111
+ def get_speakers():
112
+ return cfg.dataset.training
113
+
114
+ def get_languages():
115
+ return get_lang_symmap().keys()
116
+
117
+ #@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys())
118
+ def load_sample( speaker ):
119
+ metadata_path = cfg.metadata_dir / f'{speaker}.json'
120
+ metadata = json_read( metadata_path )
121
+ if not metadata:
122
+ raise gr.Error(f"Metadata not found: {metadata_path}")
123
+
124
+ key = random.choice( list(metadata.keys()) )
125
+ path = cfg.data_dir / speaker / f'{key}.enc' # to-do: get proper file extension
126
+ data = json_stringify( metadata[key], pretty=True )
127
+ wav, sr = None, None
128
+
129
+ if path.exists():
130
+ artifact = np.load(path, allow_pickle=True)[()]
131
+ codes = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=cfg.device)
132
+ wav, sr = decode_to_wave( codes )
133
+ wav = wav.squeeze(0).cpu().numpy()
134
+
135
+ return data, (sr, wav)
136
+
137
+ def init_tts(config=None, lora=None, restart=False, device="cuda", dtype="auto", attention=None):
138
+ global tts
139
+
140
+ if tts is not None:
141
+ if not restart:
142
+ return tts
143
+
144
+ del tts
145
+ tts = None
146
+
147
+ parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
148
+ parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
149
+ parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
150
+ parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too
151
+ parser.add_argument("--device", type=str, default=device)
152
+ parser.add_argument("--amp", action="store_true")
153
+ parser.add_argument("--dtype", type=str, default=dtype)
154
+ parser.add_argument("--attention", type=str, default=attention)
155
+ args, unknown = parser.parse_known_args()
156
+
157
+ if config:
158
+ if config.suffix == ".yaml" and not args.yaml:
159
+ args.yaml = config
160
+ elif config.suffix == ".sft" and not args.model:
161
+ args.model = config
162
+
163
+ if lora and not args.lora:
164
+ args.lora = lora
165
+
166
+ if args.yaml:
167
+ config = args.yaml
168
+ elif args.model:
169
+ config = args.model
170
+
171
+ if args.lora:
172
+ lora = args.lora
173
+
174
+ tts = TTS( config=config, lora=args.lora, device=args.device, dtype=args.dtype if args.dtype != "auto" else None, amp=args.amp, attention=args.attention )
175
+ return tts
176
+
177
+ @spaces_zerogpu_decorator
178
+ @gradio_wrapper(inputs=layout["inference_tts"]["inputs"].keys())
179
+ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
180
+ if not cfg.models:
181
+ raise Exception("No model loaded.")
182
+
183
+ if kwargs.pop("dynamic-sampling", False):
184
+ kwargs['min-ar-temp'] = 0.01 if kwargs['ar-temp'] > 0.01 else 0.0
185
+ kwargs['min-nar-temp'] = 0.0 # 0.85 if kwargs['nar-temp'] > 0.85 else 0.0 # should probably disable it for the NAR
186
+ else:
187
+ kwargs['min-ar-temp'] = -1
188
+ kwargs['min-nar-temp'] = -1
189
+
190
+ parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
191
+ # I'm very sure I can procedurally generate this list
192
+ parser.add_argument("--text", type=str, default=kwargs["text"])
193
+ parser.add_argument("--task", type=str, default="tts")
194
+ parser.add_argument("--references", type=str, default=kwargs["reference"])
195
+ parser.add_argument("--language", type=str, default=kwargs["language"])
196
+ parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"])
197
+ parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"] if cfg.experimental else False)
198
+ parser.add_argument("--max-ar-steps", type=int, default=int(kwargs["max-seconds"]*cfg.dataset.frames_per_second))
199
+ parser.add_argument("--max-nar-levels", type=int, default=kwargs["max-nar-levels"] if cfg.experimental else 0)
200
+ parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"])
201
+ parser.add_argument("--nar-temp", type=float, default=kwargs["nar-temp"])
202
+ parser.add_argument("--min-ar-temp", type=float, default=kwargs["min-ar-temp"])
203
+ parser.add_argument("--min-nar-temp", type=float, default=kwargs["min-nar-temp"])
204
+ parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"] if cfg.experimental else 0)
205
+ parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
206
+ parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
207
+ parser.add_argument("--min-p", type=float, default=kwargs["min-p"])
208
+ parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
209
+ parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
210
+ parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
211
+ parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"])
212
+ parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"])
213
+ parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"])
214
+ parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"])
215
+ parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"])
216
+ parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"])
217
+ parser.add_argument("--entropix-sampling", action="store_true")
218
+ parser.add_argument("--layer-skip", action="store_true")
219
+ parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"] if cfg.experimental else -1)
220
+ parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"] if cfg.experimental else 0.1)
221
+ parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"] if cfg.experimental else 0.1)
222
+ parser.add_argument("--refine-on-stop", action="store_true")
223
+ args, unknown = parser.parse_known_args()
224
+
225
+ if is_windows:
226
+ tmp = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
227
+ else:
228
+ tmp = tempfile.NamedTemporaryFile(suffix='.wav')
229
+
230
+ """
231
+ if not args.references:
232
+ raise Exception("No reference audio provided.")
233
+ """
234
+
235
+ if kwargs.pop("entropix-sampling", False):
236
+ args.entropix_sampling = True
237
+
238
+ if kwargs.pop("layer-skip", False):
239
+ args.layer_skip = True
240
+
241
+ if kwargs.pop("refine-on-stop", False):
242
+ args.refine_on_stop = True
243
+
244
+ tts = init_tts()
245
+
246
+ gr.Info("Inferencing...")
247
+
248
+ with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t:
249
+ wav, sr = tts.inference(
250
+ text=args.text,
251
+ language=args.language,
252
+ task=args.task,
253
+ references=args.references.split(";") if args.references is not None else [],
254
+ out_path=tmp.name,
255
+ max_ar_steps=args.max_ar_steps,
256
+ max_nar_levels=args.max_nar_levels,
257
+ input_prompt_length=args.input_prompt_length,
258
+ input_prompt_prefix=args.input_prompt_prefix,
259
+ prefix_silence=args.prefix_silence,
260
+ ar_temp=args.ar_temp,
261
+ nar_temp=args.nar_temp,
262
+ min_ar_temp=args.min_ar_temp,
263
+ min_nar_temp=args.min_nar_temp,
264
+ top_p=args.top_p,
265
+ top_k=args.top_k,
266
+ min_p=args.min_p,
267
+ beam_width=args.beam_width,
268
+ repetition_penalty=args.repetition_penalty,
269
+ repetition_penalty_decay=args.repetition_penalty_decay,
270
+ length_penalty=args.length_penalty,
271
+ mirostat_tau=args.mirostat_tau,
272
+ mirostat_eta=args.mirostat_eta,
273
+ dry_multiplier=args.dry_multiplier,
274
+ dry_base=args.dry_base,
275
+ dry_allowed_length=args.dry_allowed_length,
276
+ entropix_sampling=args.entropix_sampling,
277
+
278
+ layer_skip=args.layer_skip,
279
+ layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
280
+ layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
281
+ refine_on_stop=args.refine_on_stop,
282
+ )
283
+
284
+ wav = wav.squeeze(0).cpu().numpy()
285
+ return (sr, wav)
286
+
287
+ @gradio_wrapper(inputs=layout["inference_stt"]["inputs"].keys())
288
+ def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
289
+ if not cfg.models:
290
+ raise Exception("No model loaded.")
291
+
292
+ if kwargs.pop("dynamic-sampling", False):
293
+ kwargs['min-ar-temp'] = 0.85 if kwargs['ar-temp'] > 0.85 else 0.0
294
+ else:
295
+ kwargs['min-ar-temp'] = -1
296
+
297
+ parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
298
+ # I'm very sure I can procedurally generate this list
299
+ parser.add_argument("--references", type=str, default=kwargs["reference"])
300
+ parser.add_argument("--language", type=str, default=kwargs["language"])
301
+ parser.add_argument("--max-ar-steps", type=int, default=0)
302
+ parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"])
303
+ parser.add_argument("--min-ar-temp", type=float, default=kwargs["min-ar-temp"])
304
+ parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
305
+ parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
306
+ parser.add_argument("--min-p", type=int, default=kwargs["min-p"])
307
+ parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
308
+ parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
309
+ parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
310
+ parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"])
311
+ parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"])
312
+ parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"])
313
+ parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"])
314
+ parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"])
315
+ parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"])
316
+ parser.add_argument("--entropix-sampling", action="store_true")
317
+ args, unknown = parser.parse_known_args()
318
+
319
+
320
+ """
321
+ if not args.references:
322
+ raise Exception("No reference audio provided.")
323
+ """
324
+
325
+ args.references = args.references.split(";") if args.references is not None else []
326
+ if args.max_ar_steps == 0:
327
+ for i, path in enumerate( args.references ):
328
+ metadata = torchaudio.info(path)
329
+ duration = metadata.num_frames / metadata.sample_rate
330
+ args.max_ar_steps += duration
331
+ args.max_ar_steps = math.floor( args.max_ar_steps * 20 ) # assume 20 tokens per second
332
+
333
+ if kwargs.pop("entropix-sampling", False):
334
+ args.entropix_sampling = True
335
+
336
+ tts = init_tts()
337
+
338
+ gr.Info("Inferencing...")
339
+ with timer("Inferenced in") as t:
340
+ text = tts.inference(
341
+ text="",
342
+ language=args.language,
343
+ task="stt",
344
+ references=args.references,
345
+ max_ar_steps=args.max_ar_steps,
346
+ ar_temp=args.ar_temp,
347
+ min_ar_temp=args.min_ar_temp,
348
+ top_p=args.top_p,
349
+ top_k=args.top_k,
350
+ min_p=args.min_p,
351
+ repetition_penalty=args.repetition_penalty,
352
+ repetition_penalty_decay=args.repetition_penalty_decay,
353
+ length_penalty=args.length_penalty,
354
+ mirostat_tau=args.mirostat_tau,
355
+ mirostat_eta=args.mirostat_eta,
356
+ dry_multiplier=args.dry_multiplier,
357
+ dry_base=args.dry_base,
358
+ dry_allowed_length=args.dry_allowed_length,
359
+ entropix_sampling=args.entropix_sampling,
360
+ )
361
+
362
+ return text
363
+
364
+ """
365
+ @gradio_wrapper(inputs=layout["training"]["inputs"].keys())
366
+ def do_training( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
367
+ while True:
368
+ metrics = next(it)
369
+ yield metrics
370
+ """
371
+
372
+ # setup args
373
+ parser = argparse.ArgumentParser(allow_abbrev=False)
374
+ parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
375
+ parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
376
+ parser.add_argument("--listen", default=None, help="Path for Gradio to listen on")
377
+ parser.add_argument("--share", action="store_true")
378
+ parser.add_argument("--render_markdown", action="store_true", default="VALLE_YAML" in os.environ)
379
+ args, unknown = parser.parse_known_args()
380
+
381
+ args.listen_host = None
382
+ args.listen_port = None
383
+ args.listen_path = None
384
+ if args.listen:
385
+ try:
386
+ match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0]
387
+
388
+ args.listen_host = match[0] if match[0] != "" else "127.0.0.1"
389
+ args.listen_port = match[1] if match[1] != "" else None
390
+ args.listen_path = match[2] if match[2] != "" else "/"
391
+ except Exception as e:
392
+ pass
393
+
394
+ if args.listen_port is not None:
395
+ args.listen_port = int(args.listen_port)
396
+ if args.listen_port == 0:
397
+ args.listen_port = None
398
+
399
+ # setup gradio
400
+ ui = gr.Blocks()
401
+ with ui:
402
+ with gr.Tab("Inference"):
403
+ with gr.Tab("Text-to-Speech"):
404
+ with gr.Row():
405
+ with gr.Column(scale=8):
406
+ layout["inference_tts"]["inputs"]["text"] = gr.Textbox(lines=5, value=get_random_prompt, label="Input Prompt")
407
+ with gr.Row():
408
+ with gr.Column(scale=1):
409
+ layout["inference_tts"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS")
410
+ # layout["inference_tts"]["stop"] = gr.Button(value="Stop")
411
+ layout["inference_tts"]["outputs"]["output"] = gr.Audio(label="Output")
412
+ layout["inference_tts"]["buttons"]["inference"] = gr.Button(value="Inference")
413
+ with gr.Column(scale=7):
414
+ with gr.Tab("Basic Settings"):
415
+ with gr.Row():
416
+ layout["inference_tts"]["inputs"]["max-seconds"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="Limits how many steps to perform in the AR pass.")
417
+ layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=5.0, minimum=0.0, maximum=12.0, step=0.05, label="Input Prompt Repeat/Trim Length", info="Repeats and trims the input prompt down to X seconds. Set 0 to disable.")
418
+ with gr.Row():
419
+ layout["inference_tts"]["inputs"]["ar-temp"] = gr.Slider(value=0.5, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy* sample)")
420
+ layout["inference_tts"]["inputs"]["nar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)")
421
+ with gr.Row():
422
+ layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
423
+ with gr.Tab("Sampler Settings"):
424
+ with gr.Row():
425
+ layout["inference_tts"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
426
+ layout["inference_tts"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
427
+ layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P")
428
+ layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
429
+ with gr.Row():
430
+ layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.5, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
431
+ layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
432
+ layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
433
+ with gr.Row():
434
+ layout["inference_tts"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
435
+ layout["inference_tts"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
436
+ with gr.Row():
437
+ layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
438
+ layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
439
+ layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
440
+ if cfg.experimental:
441
+ with gr.Tab("Experimental Settings"):
442
+ with gr.Row():
443
+ layout["inference_tts"]["inputs"]["max-nar-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
444
+ layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.")
445
+ with gr.Row():
446
+ layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.")
447
+ with gr.Row():
448
+ layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
449
+ layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
450
+ with gr.Row():
451
+ layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
452
+ layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
453
+ with gr.Row():
454
+ layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
455
+ layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
456
+ layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
457
+
458
+
459
+ layout["inference_tts"]["buttons"]["inference"].click(
460
+ fn=do_inference_tts,
461
+ inputs=[ x for x in layout["inference_tts"]["inputs"].values() if x is not None],
462
+ outputs=[ x for x in layout["inference_tts"]["outputs"].values() if x is not None]
463
+ )
464
+
465
+ with gr.Tab("Speech to Text"):
466
+ with gr.Row():
467
+ with gr.Column(scale=8):
468
+ layout["inference_stt"]["outputs"]["ouput"] = gr.Textbox(lines=1, label="Output Transcription")
469
+ with gr.Row():
470
+ with gr.Column(scale=1):
471
+ layout["inference_stt"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS")
472
+ # layout["inference_stt"]["stop"] = gr.Button(value="Stop")
473
+ layout["inference_stt"]["buttons"]["inference"] = gr.Button(value="Inference")
474
+ with gr.Column(scale=7):
475
+ with gr.Tab("Basic Settings"):
476
+ with gr.Row():
477
+ layout["inference_stt"]["inputs"]["ar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)")
478
+ with gr.Row():
479
+ layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
480
+ layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
481
+ with gr.Tab("Sampler Settings"):
482
+ with gr.Row():
483
+ layout["inference_stt"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
484
+ layout["inference_stt"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
485
+ layout["inference_stt"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P")
486
+ layout["inference_stt"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
487
+ with gr.Row():
488
+ layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.25, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
489
+ layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
490
+ layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
491
+ with gr.Row():
492
+ layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
493
+ layout["inference_stt"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
494
+ with gr.Row():
495
+ layout["inference_stt"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
496
+ layout["inference_stt"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
497
+ layout["inference_stt"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
498
+
499
+ layout["inference_stt"]["buttons"]["inference"].click(
500
+ fn=do_inference_stt,
501
+ inputs=[ x for x in layout["inference_stt"]["inputs"].values() if x is not None],
502
+ outputs=[ x for x in layout["inference_stt"]["outputs"].values() if x is not None]
503
+ )
504
+
505
+
506
+ """
507
+ with gr.Tab("Training"):
508
+ with gr.Row():
509
+ with gr.Column(scale=1):
510
+ layout["training"]["outputs"]["console"] = gr.Textbox(lines=8, label="Console Log")
511
+ with gr.Row():
512
+ with gr.Column(scale=1):
513
+ layout["training"]["buttons"]["train"] = gr.Button(value="Train")
514
+
515
+ layout["training"]["buttons"]["train"].click(
516
+ fn=do_training,
517
+ outputs=[ x for x in layout["training"]["outputs"].values() if x is not None],
518
+ )
519
+ """
520
+
521
+ if not USING_SPACES:
522
+ with gr.Tab("Dataset"):
523
+ with gr.Row():
524
+ with gr.Column(scale=7):
525
+ layout["dataset"]["outputs"]["transcription"] = gr.Textbox(lines=5, label="Sample Metadata")
526
+ with gr.Column(scale=1):
527
+ layout["dataset"]["inputs"]["speaker"] = gr.Dropdown(choices=get_speakers(), label="Speakers")
528
+ layout["dataset"]["outputs"]["audio"] = gr.Audio(label="Output")
529
+ layout["dataset"]["buttons"]["sample"] = gr.Button(value="Sample")
530
+
531
+ layout["dataset"]["buttons"]["sample"].click(
532
+ fn=load_sample,
533
+ inputs=[ x for x in layout["dataset"]["inputs"].values() if x is not None],
534
+ outputs=[ x for x in layout["dataset"]["outputs"].values() if x is not None],
535
+ )
536
+
537
+ if not USING_SPACES:
538
+ with gr.Tab("Settings"):
539
+ with gr.Row():
540
+ with gr.Column(scale=7):
541
+ with gr.Row():
542
+ layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model")
543
+ layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device")
544
+ layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision")
545
+ layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions")
546
+ with gr.Column(scale=1):
547
+ layout["settings"]["buttons"]["load"] = gr.Button(value="Load Model")
548
+
549
+ layout["settings"]["buttons"]["load"].click(
550
+ fn=load_model,
551
+ inputs=[ x for x in layout["settings"]["inputs"].values() if x is not None],
552
+ outputs=[ x for x in layout["settings"]["outputs"].values() if x is not None],
553
+ )
554
+
555
+ if os.path.exists("README.md") and args.render_markdown:
556
+ md = open("README.md", "r", encoding="utf-8").read()
557
+ # remove HF's metadata
558
+ if md.startswith("---\n"):
559
+ md = "".join(md.split("---")[2:])
560
+ gr.Markdown(md)
561
+
562
+ def start( lock=True ):
563
+ setup_logging()
564
+
565
+ if not USING_SPACES:
566
+ ui.queue(max_size=8)
567
+ ui.launch(share=args.share, server_name=args.listen_host, server_port=args.listen_port, prevent_thread_lock=not lock)
568
+ else:
569
+ ui.queue().launch()
570
+
571
+ if __name__ == "__main__":
572
+ start()