AIHack_125 / app.py
eaglelandsonce's picture
Create app.py
b61df43 verified
raw
history blame
3.19 kB
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from transformers import pipeline
from datasets import load_dataset
# Hugging Face Datasets
@st.cache_data
def load_data():
network_insights = load_dataset("huggingface/infrastructure-insights", split="train")
broadband_forecast = load_dataset("huggingface/broadband-access-forecast", split="train")
return network_insights.to_pandas(), broadband_forecast.to_pandas()
# Load Datasets
network_insights, broadband_forecast = load_data()
# Title
st.title("Smart Network Infrastructure Planner")
st.sidebar.header("Input Parameters")
# User Inputs from Sidebar
budget = st.sidebar.number_input("Total Budget (in $1000s):", min_value=10, max_value=1000, step=10)
priority_area = st.sidebar.selectbox("Priority Area:", ["Rural", "Urban", "Suburban"])
signal_threshold = st.sidebar.slider("Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80)
# Display Dataset Options
data_to_view = st.sidebar.selectbox("Select Dataset to View:", ["Network Insights", "Broadband Forecast"])
# Display Selected Dataset
if data_to_view == "Network Insights":
st.subheader("Network Insights Dataset")
st.dataframe(network_insights)
else:
st.subheader("Broadband Forecast Dataset")
st.dataframe(broadband_forecast)
# Terrain and Connectivity Analysis Section
st.header("Terrain and Connectivity Analysis")
# Simulate Terrain Data
def generate_terrain_data():
np.random.seed(42)
data = {
"Region": [f"Region-{i}" for i in range(1, 11)],
"Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10),
"Signal Strength (dBm)": np.random.randint(-120, -30, size=10),
"Cost ($1000s)": np.random.randint(50, 200, size=10),
}
return pd.DataFrame(data)
terrain_data = generate_terrain_data()
# Filter Data Based on User Inputs
filtered_data = terrain_data[
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) & (terrain_data["Cost ($1000s)"] <= budget)
]
# Display Filtered Results
st.write("Filtered Results Based on Inputs:")
st.dataframe(filtered_data)
# Visualization
fig = px.scatter(
filtered_data,
x="Cost ($1000s)",
y="Signal Strength (dBm)",
size="Terrain Difficulty (0-10)",
color="Region",
title="Signal Strength vs. Cost",
labels={
"Cost ($1000s)": "Cost in $1000s",
"Signal Strength (dBm)": "Signal Strength in dBm",
},
)
st.plotly_chart(fig)
# Recommendation Engine
st.header("Deployment Recommendations")
def recommend_deployment(data):
if data.empty:
return "No viable deployment regions within the specified parameters."
best_region = data.loc[data["Signal Strength (dBm)"].idxmax()]
return f"Recommended Region: {best_region['Region']} with Signal Strength: {best_region['Signal Strength (dBm)']} dBm and Estimated Cost: ${best_region['Cost ($1000s)']}k"
recommendation = recommend_deployment(filtered_data)
st.subheader(recommendation)
# Footer
st.sidebar.markdown("---")
st.sidebar.markdown(
"**Developed for Hackathon using Hugging Face Infinite Dataset Hub**\n\n[Visit Hugging Face](https://huggingface.co)")