Spaces:
Sleeping
Sleeping
File size: 19,312 Bytes
746d2f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
---
title: Trigger a full-script rerun from inside a fragment
slug: /develop/tutorials/execution-flow/trigger-a-full-script-rerun-from-a-fragment
---
# Trigger a full-script rerun from inside a fragment
Streamlit lets you turn functions into [fragments](/develop/concepts/architecture/fragments), which can rerun independently from the full script. When a user interacts with a widget inside a fragment, only the fragment ruruns. Sometimes, you may want to trigger a full-script rerun from inside a fragment. To do this, call [`st.rerun`](/develop/api-reference/execution-flow/st.rerun) inside the fragment.
## Applied concepts
- Use a fragment to rerun part or all of your app, depending on user input.
## Prerequisites
**`streamlit>=1.33.0`**
- This tutorial uses fragments, which require Streamlit version 1.33.0 or later.
- This tutorial assumes you have a clean working directory called `your-repository`.
- You should have a basic understanding of fragments and `st.rerun`.
## Summary
In this example, you'll build an app to display sales data. The app has two sets of elements that depend on a date selection. One set of elements displays information for the selected day. The other set of elements displays information for the associated month. If the user changes days within a month, Streamlit only needs to update the first set of elements. If the user selects a day in a different month, Streamlit needs to update all the elements.
You'll collect the day-specific elements into a fragment to avoid rerunning the full app when a user changes days within the same month. If you want to jump ahead to the fragment function definition, see [Build a function to show daily sales data](#build-a-function-to-show-daily-sales-data).
<div style={{ maxWidth: '60%', margin: 'auto' }}>
<Image alt="Execution flow of example Streamlit app showing daily sales on the left and monthly sales on the right" src="/images/tutorials/fragment-rerun-tutorial-execution-flow.png" />
</div>
Here's a look at what you'll build:
<Collapse title="Complete code" expanded={false}>
```python
import streamlit as st
import pandas as pd
import numpy as np
from datetime import date, timedelta
import string
import time
@st.cache_data
def get_data():
"""Generate random sales data for Widget A through Widget Z"""
product_names = ["Widget " + letter for letter in string.ascii_uppercase]
average_daily_sales = np.random.normal(1_000, 300, len(product_names))
products = dict(zip(product_names, average_daily_sales))
data = pd.DataFrame({})
sales_dates = np.arange(date(2023, 1, 1), date(2024, 1, 1), timedelta(days=1))
for product, sales in products.items():
data[product] = np.random.normal(sales, 300, len(sales_dates)).round(2)
data.index = sales_dates
data.index = data.index.date
return data
@st.experimental_fragment
def show_daily_sales(data):
time.sleep(1)
with st.container(height=100):
selected_date = st.date_input(
"Pick a day ",
value=date(2023, 1, 1),
min_value=date(2023, 1, 1),
max_value=date(2023, 12, 31),
key="selected_date",
)
if "previous_date" not in st.session_state:
st.session_state.previous_date = selected_date
previous_date = st.session_state.previous_date
st.session_state.previous_date = selected_date
is_new_month = selected_date.replace(day=1) != previous_date.replace(day=1)
if is_new_month:
st.rerun()
with st.container(height=510):
st.header(f"Best sellers, {selected_date:%m/%d/%y}")
top_ten = data.loc[selected_date].sort_values(ascending=False)[0:10]
cols = st.columns([1, 4])
cols[0].dataframe(top_ten)
cols[1].bar_chart(top_ten)
with st.container(height=510):
st.header(f"Worst sellers, {selected_date:%m/%d/%y}")
bottom_ten = data.loc[selected_date].sort_values()[0:10]
cols = st.columns([1, 4])
cols[0].dataframe(bottom_ten)
cols[1].bar_chart(bottom_ten)
def show_monthly_sales(data):
time.sleep(1)
selected_date = st.session_state.selected_date
this_month = selected_date.replace(day=1)
next_month = (selected_date.replace(day=28) + timedelta(days=4)).replace(day=1)
st.container(height=100, border=False)
with st.container(height=510):
st.header(f"Daily sales for all products, {this_month:%B %Y}")
monthly_sales = data[(data.index < next_month) & (data.index >= this_month)]
st.write(monthly_sales)
with st.container(height=510):
st.header(f"Total sales for all products, {this_month:%B %Y}")
st.bar_chart(monthly_sales.sum())
st.set_page_config(layout="wide")
st.title("Daily vs monthly sales, by product")
st.markdown("This app shows the 2023 daily sales for Widget A through Widget Z.")
data = get_data()
daily, monthly = st.columns(2)
with daily:
show_daily_sales(data)
with monthly:
show_monthly_sales(data)
```
</Collapse>

[Click here to see the example live on Community Cloud.](https://doc-tutorial-fragment-rerun.streamlit.app/)
## Build the example
### Initialize your app
1. In `your_repository`, create a file named `app.py`.
1. In a terminal, change directories to `your_repository` and start your app.
```bash
streamlit run app.py
```
Your app will be blank since you still need to add code.
1. In `app.py`, write the following:
```python
import streamlit as st
import pandas as pd
import numpy as np
from datetime import date, timedelta
import string
import time
```
You'll be using these libraries as follows:
- You'll work with sales data in a `pandas.DataFrame`.
- You'll generate random sales numbers with `numpy`.
- The data will have `datetime.date` index values.
- The products sold will be "Widget A" through "Widget Z," so you'll use `string` for easy access to an alphabetical string.
- (Optional) To help add emphasis at the end, you'll use `time.sleep()` to slow things down and see the fragment working.
1. Save your `app.py` file and view your running app.
1. Click "**Always rerun**" or hit your "**A**" key in your running app.
Your running preview will automatically update as you save changes to `app.py`. Your preview will still be blank. Return to your code.
### Build a function to create random sales data
To begin with, you'll define a function to randomly generate some sales data. It's okay to skip this section if you just want to copy the function.
<Collapse title="Complete function to randomly generate sales data" expanded={false}>
```python
@st.cache_data
def get_data():
"""Generate random sales data for Widget A through Widget Z"""
product_names = ["Widget " + letter for letter in string.ascii_uppercase]
average_daily_sales = np.random.normal(1_000, 300, len(product_names))
products = dict(zip(product_names, average_daily_sales))
data = pd.DataFrame({})
sales_dates = np.arange(date(2023, 1, 1), date(2024, 1, 1), timedelta(days=1))
for product, sales in products.items():
data[product] = np.random.normal(sales, 300, len(sales_dates)).round(2)
data.index = sales_dates
data.index = data.index.date
return data
```
</Collapse>
1. Use an `@st.cache_data` decorator and start your function definition.
```python
@st.cache_data
def get_data():
"""Generate random sales data for Widget A through Widget Z"""
```
You don't need to keep re-randomizing the data, so the caching decorator will randomly generate the data once and save it in Streamlit's cache. As your app reruns, it will use the cached value instead of recomputing new data.
1. Define the list of product names and assign an average daily sales value to each.
```python
product_names = ["Widget " + letter for letter in string.ascii_uppercase]
average_daily_sales = np.random.normal(1_000, 300, len(product_names))
products = dict(zip(product_names, average_daily_sales))
```
1. For each product, use its average daily sales to randomly generate daily sales values for an entire year.
```python
data = pd.DataFrame({})
sales_dates = np.arange(date(2023, 1, 1), date(2024, 1, 1), timedelta(days=1))
for product, sales in products.items():
data[product] = np.random.normal(sales, 300, len(sales_dates)).round(2)
data.index = sales_dates
data.index = data.index.date
```
In the last line, `data.index.date` strips away the timestamp, so the index will show clean dates.
1. Return the random sales data.
```python
return data
```
1. (Optional) Test out your function by calling it and displaying the data.
```python
data = get_data()
data
```
Save your `app.py` file to see the preview. Delete these two lines or keep them at the end of your app to be updated as you continue.
### Build a function to show daily sales data
Since the daily sales data updates with every new date selection, you'll turn this function into a fragment. As a fragment, it can rerun independently from the rest of your app. You'll include an `st.date_input` widget inside this fragment and watch for a date selection that changes the month. When the fragment detects a change in the selected month, it will trigger a full app rerun so everything can update.
<Collapse title="Complete function to display daily sales data" expanded={false}>
```python
@st.experimental_fragment
def show_daily_sales(data):
time.sleep(1)
selected_date = st.date_input(
"Pick a day ",
value=date(2023, 1, 1),
min_value=date(2023, 1, 1),
max_value=date(2023, 12, 31),
key="selected_date",
)
if "previous_date" not in st.session_state:
st.session_state.previous_date = selected_date
previous_date = st.session_state.previous_date
st.session_state.previous_date = selected_date
is_new_month = selected_date.replace(day=1) != previous_date.replace(day=1)
if is_new_month:
st.rerun()
st.header(f"Best sellers, {selected_date:%m/%d/%y}")
top_ten = data.loc[selected_date].sort_values(ascending=False)[0:10]
cols = st.columns([1, 4])
cols[0].dataframe(top_ten)
cols[1].bar_chart(top_ten)
st.header(f"Worst sellers, {selected_date:%m/%d/%y}")
bottom_ten = data.loc[selected_date].sort_values()[0:10]
cols = st.columns([1, 4])
cols[0].dataframe(bottom_ten)
cols[1].bar_chart(bottom_ten)
```
</Collapse>
1. Use an [`@st.experimental_fragment`](/develop/api-reference/execution-flow/st.fragment) decorator and start your function definition.
```python
@st.experimental_fragment
def show_daily_sales(data):
```
Since your data will not change during a fragment rerun, you can pass the data into the fragment as an argument.
1. (Optional) Add `time.sleep(1)` to slow down the function and show off how the fragment works.
```python
time.sleep(1)
```
1. Add an `st.date_input` widget.
```python
selected_date = st.date_input(
"Pick a day ",
value=date(2023, 1, 1),
min_value=date(2023, 1, 1),
max_value=date(2023, 12, 31),
key="selected_date",
)
```
Your random data is for 2023, so set the minimun and maximum dates to match. Use a key for the widget because elements outside the fragment will need this date value. When working with a fragment, it's best to use Session State to pass information in and out of the fragment.
1. Initialize `"previous_date"` in Session State to compare each date selection.
```python
if "previous_date" not in st.session_state:
st.session_state.previous_date = selected_date
```
1. Save the previous date selection into a new variable and update `"previous_date"` in Session State.
```python
previous_date = st.session_state.previous_date
st.session_state.previous_date = selected_date
```
1. Call `st.rerun()` if the month changed.
```python
is_new_month = selected_date.replace(day=1) != previous_date.replace(day=1)
if is_new_month:
st.rerun()
```
1. Show the best sellers from the selected date.
```python
st.header(f"Best sellers, {selected_date:%m/%d/%y}")
top_ten = data.loc[selected_date].sort_values(ascending=False)[0:10]
cols = st.columns([1, 4])
cols[0].dataframe(top_ten)
cols[1].bar_chart(top_ten)
```
1. Show the worst sellers from the selected date.
```python
st.header(f"Worst sellers, {selected_date:%m/%d/%y}")
bottom_ten = data.loc[selected_date].sort_values()[0:10]
cols = st.columns([1, 4])
cols[0].dataframe(bottom_ten)
cols[1].bar_chart(bottom_ten)
```
1. (Optional) Test out your function by calling it and displaying the data.
```python
data = get_data()
show_daily_sales(data)
```
Save your `app.py` file to see the preview. Delete these two lines or keep them at the end of your app to be updated as you continue.
### Build a function to show monthly sales data
Finally, let's build a function to display monthly sales data. It will be similar to your `show_daily_sales` function but doesn't need to be fragment. You only need to rerun this function when the whole app is rerunning.
<Collapse title="Complete function to display daily sales data" expanded={false}>
```python
def show_monthly_sales(data):
time.sleep(1)
selected_date = st.session_state.selected_date
this_month = selected_date.replace(day=1)
next_month = (selected_date.replace(day=28) + timedelta(days=4)).replace(day=1)
st.header(f"Daily sales for all products, {this_month:%B %Y}")
monthly_sales = data[(data.index < next_month) & (data.index >= this_month)]
st.write(monthly_sales)
st.header(f"Total sales for all products, {this_month:%B %Y}")
st.bar_chart(monthly_sales.sum())
```
</Collapse>
1. Start your function definition.
```python
def show_monthly_sales(data):
```
1. (Optional) Add `time.sleep(1)` to slow down the function and show off how the fragment works.
```python
time.sleep(1)
```
1. Get the selected date from Session State and compute the first days of this and next month.
```python
selected_date = st.session_state.selected_date
this_month = selected_date.replace(day=1)
next_month = (selected_date.replace(day=28) + timedelta(days=4)).replace(day=1)
```
1. Show the daily sales values for all products within the selected month.
```python
st.header(f"Daily sales for all products, {this_month:%B %Y}")
monthly_sales = data[(data.index < next_month) & (data.index >= this_month)]
st.write(monthly_sales)
```
1. Show the total sales of each product within the selected month.
```python
st.header(f"Total sales for all products, {this_month:%B %Y}")
st.bar_chart(monthly_sales.sum())
```
1. (Optional) Test out your function by calling it and displaying the data.
```python
data = get_data()
show_daily_sales(data)
show_monthly_sales(data)
```
Save your `app.py` file to see the preview. Delete these three lines when finished.
### Put the functions together together to create an app
Let's show these elements side-by-side. You'll display the daily data on the left and the monthly data on the right.
1. If you added optional lines at the end of your code to test your functions, clear them out now.
1. Give your app a wide layout.
```python
st.set_page_config(layout="wide")
```
1. Get your data.
```python
data = get_data()
```
1. Add a title and description for your app.
```python
st.title("Daily vs monthly sales, by product")
st.markdown("This app shows the 2023 daily sales for Widget A through Widget Z.")
```
1. Create columns and call the functions to display data.
```python
daily, monthly = st.columns(2)
with daily:
show_daily_sales(data)
with monthly:
show_monthly_sales(data)
```
### Make it pretty
Now, you have a functioning app that uses a fragment to prevent unnecessarily redrawing the monthly data. However, things aren't aligned on the page, so you can insert a few containers to make it pretty. Add three containers into each of the display functions.
1. Add three containers to fix the height of elements in the `show_daily_sales` function.
```python
@st.experimental_fragment
def show_daily_sales(data):
time.sleep(1)
with st.container(height=100): ### ADD CONTAINER ###
selected_date = st.date_input(
"Pick a day ",
value=date(2023, 1, 1),
min_value=date(2023, 1, 1),
max_value=date(2023, 12, 31),
key="selected_date",
)
if "previous_date" not in st.session_state:
st.session_state.previous_date = selected_date
previous_date = st.session_state.previous_date
previous_date = st.session_state.previous_date
st.session_state.previous_date = selected_date
is_new_month = selected_date.replace(day=1) != previous_date.replace(day=1)
if is_new_month:
st.rerun()
with st.container(height=510): ### ADD CONTAINER ###
st.header(f"Best sellers, {selected_date:%m/%d/%y}")
top_ten = data.loc[selected_date].sort_values(ascending=False)[0:10]
cols = st.columns([1, 4])
cols[0].dataframe(top_ten)
cols[1].bar_chart(top_ten)
with st.container(height=510): ### ADD CONTAINER ###
st.header(f"Worst sellers, {selected_date:%m/%d/%y}")
bottom_ten = data.loc[selected_date].sort_values()[0:10]
cols = st.columns([1, 4])
cols[0].dataframe(bottom_ten)
cols[1].bar_chart(bottom_ten)
```
1. Add three containers to fix the height of elements in the `show_monthly_sales` function.
```python
def show_monthly_sales(data):
time.sleep(1)
selected_date = st.session_state.selected_date
this_month = selected_date.replace(day=1)
next_month = (selected_date.replace(day=28) + timedelta(days=4)).replace(day=1)
st.container(height=100, border=False) ### ADD CONTAINER ###
with st.container(height=510): ### ADD CONTAINER ###
st.header(f"Daily sales for all products, {this_month:%B %Y}")
monthly_sales = data[(data.index < next_month) & (data.index >= this_month)]
st.write(monthly_sales)
with st.container(height=510): ### ADD CONTAINER ###
st.header(f"Total sales for all products, {this_month:%B %Y}")
st.bar_chart(monthly_sales.sum())
```
The first container creates space to coordinate with the input widget in the `show_daily_sales` function.
### Next steps
Continue beautifying the example. Try using [`st.plotly_chart`](/develop/api-reference/charts/st.plotly_chart) or [`st.altair_chart`](/develop/api-reference/charts/st.altair_chart) to add labels to your charts and adjust their height.
|