File size: 6,436 Bytes
746d2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
title: Connect Streamlit to Google BigQuery
slug: /develop/tutorials/databases/bigquery
---

# Connect Streamlit to Google BigQuery

## Introduction

This guide explains how to securely access a BigQuery database from Streamlit Community Cloud. It uses the
[google-cloud-bigquery](https://googleapis.dev/python/bigquery/latest/index.html) library and
Streamlit's [Secrets management](/deploy/streamlit-community-cloud/deploy-your-app/secrets-management).

## Create a BigQuery database

<Note>

If you already have a database that you want to use, feel free
to [skip to the next step](#enable-the-bigquery-api).

</Note>

For this example, we will use one of the [sample datasets](https://cloud.google.com/bigquery/public-data#sample_tables) from BigQuery (namely the `shakespeare` table). If you want to create a new dataset instead, follow [Google's quickstart guide](https://cloud.google.com/bigquery/docs/quickstarts/quickstart-web-ui).

## Enable the BigQuery API

Programmatic access to BigQuery is controlled through [Google Cloud Platform](https://cloud.google.com). Create an account or sign in and head over to the [APIs & Services dashboard](https://console.cloud.google.com/apis/dashboard) (select or create a project if asked). As shown below, search for the BigQuery API and enable it:

<Flex>
<Image alt="Bigquery screenshot 1" src="/images/databases/big-query-1.png" />
<Image alt="Bigquery screenshot 2" src="/images/databases/big-query-2.png" />
<Image alt="Bigquery screenshot 3" src="/images/databases/big-query-3.png" />
</Flex>

## Create a service account & key file

To use the BigQuery API from Streamlit Community Cloud, you need a Google Cloud Platform service account (a special account type for programmatic data access). Go to the [Service Accounts](https://console.cloud.google.com/iam-admin/serviceaccounts) page and create an account with the **Viewer** permission (this will let the account access data but not change it):

<Flex>
<Image alt="Bigquery screenshot 4" src="/images/databases/big-query-4.png" />
<Image alt="Bigquery screenshot 5" src="/images/databases/big-query-5.png" />
<Image alt="Bigquery screenshot 6" src="/images/databases/big-query-6.png" />
</Flex>

<Note>

If the button **CREATE SERVICE ACCOUNT** is gray, you don't have the correct permissions. Ask the
admin of your Google Cloud project for help.

</Note>

After clicking **DONE**, you should be back on the service accounts overview. Create a JSON key file for the new account and download it:

<Flex>
<Image alt="Bigquery screenshot 7" src="/images/databases/big-query-7.png" />
<Image alt="Bigquery screenshot 8" src="/images/databases/big-query-8.png" />
<Image alt="Bigquery screenshot 9" src="/images/databases/big-query-9.png" />
</Flex>

## Add the key file to your local app secrets

Your local Streamlit app will read secrets from a file `.streamlit/secrets.toml` in your app's root
directory. Create this file if it doesn't exist yet and add the content of the key file you just
downloaded to it as shown below:

```toml
# .streamlit/secrets.toml

[gcp_service_account]
type = "service_account"
project_id = "xxx"
private_key_id = "xxx"
private_key = "xxx"
client_email = "xxx"
client_id = "xxx"
auth_uri = "https://accounts.google.com/o/oauth2/auth"
token_uri = "https://oauth2.googleapis.com/token"
auth_provider_x509_cert_url = "https://www.googleapis.com/oauth2/v1/certs"
client_x509_cert_url = "xxx"
```

<Important>

Add this file to `.gitignore` and don't commit it to your GitHub repo!

</Important>

## Copy your app secrets to the cloud

As the `secrets.toml` file above is not committed to GitHub, you need to pass its content to your deployed app (on Streamlit Community Cloud) separately. Go to the [app dashboard](https://share.streamlit.io/) and in the app's dropdown menu, click on **Edit Secrets**. Copy the content of `secrets.toml` into the text area. More information is available at [Secrets management](/deploy/streamlit-community-cloud/deploy-your-app/secrets-management).

![Secrets manager screenshot](/images/databases/edit-secrets.png)

## Add google-cloud-bigquery to your requirements file

Add the [google-cloud-bigquery](https://googleapis.dev/python/bigquery/latest/index.html) package to your `requirements.txt` file, preferably pinning its version (replace `x.x.x` with the version want installed):

```bash
# requirements.txt
google-cloud-bigquery==x.x.x
```

## Write your Streamlit app

Copy the code below to your Streamlit app and run it. Make sure to adapt the query if you don't use the sample table.

```python
# streamlit_app.py

import streamlit as st
from google.oauth2 import service_account
from google.cloud import bigquery

# Create API client.
credentials = service_account.Credentials.from_service_account_info(
    st.secrets["gcp_service_account"]
)
client = bigquery.Client(credentials=credentials)

# Perform query.
# Uses st.cache_data to only rerun when the query changes or after 10 min.
@st.cache_data(ttl=600)
def run_query(query):
    query_job = client.query(query)
    rows_raw = query_job.result()
    # Convert to list of dicts. Required for st.cache_data to hash the return value.
    rows = [dict(row) for row in rows_raw]
    return rows

rows = run_query("SELECT word FROM `bigquery-public-data.samples.shakespeare` LIMIT 10")

# Print results.
st.write("Some wise words from Shakespeare:")
for row in rows:
    st.write("✍️ " + row['word'])
```

See `st.cache_data` above? Without it, Streamlit would run the query every time the app reruns (e.g. on a widget interaction). With `st.cache_data`, it only runs when the query changes or after 10 minutes (that's what `ttl` is for). Watch out: If your database updates more frequently, you should adapt `ttl` or remove caching so viewers always see the latest data. Learn more in [Caching](/develop/concepts/architecture/caching).

Alternatively, you can use pandas to read from BigQuery right into a dataframe! Follow all the above steps, install the [pandas-gbq](https://pandas-gbq.readthedocs.io/en/latest/index.html) library (don't forget to add it to `requirements.txt`!), and call `pandas.read_gbq(query, credentials=credentials)`. More info [in the pandas docs](https://pandas.pydata.org/docs/reference/api/pandas.read_gbq.html).

If everything worked out (and you used the sample table), your app should look like this:

![Final app screenshot](/images/databases/big-query-10.png)