Spaces:
Runtime error
Runtime error
Update helper/utils.py
Browse files- helper/utils.py +38 -6
helper/utils.py
CHANGED
|
@@ -52,11 +52,6 @@ def current_year():
|
|
| 52 |
# return [text_list, sources_list]
|
| 53 |
|
| 54 |
|
| 55 |
-
from typing import List, Tuple
|
| 56 |
-
|
| 57 |
-
import PyPDF2
|
| 58 |
-
|
| 59 |
-
|
| 60 |
def read_and_textify(
|
| 61 |
files: List[str], chunk_size: int = 2 # Default chunk size set to 50
|
| 62 |
) -> Tuple[List[str], List[str]]:
|
|
@@ -134,6 +129,43 @@ def list_to_nums(sentences: List[str]) -> List[List[float]]:
|
|
| 134 |
return embeddings
|
| 135 |
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
def quantize_to_kbit(arr: Union[np.ndarray, Any], k: int = 16) -> np.ndarray:
|
| 138 |
"""Converts an array to a k-bit representation by normalizing and scaling its values.
|
| 139 |
|
|
@@ -256,4 +288,4 @@ def query_search(
|
|
| 256 |
# Sort the DataFrame based on the 'qim' score in descending order
|
| 257 |
refs = refs.sort_values(by="qim", ascending=False)
|
| 258 |
|
| 259 |
-
return refs
|
|
|
|
| 52 |
# return [text_list, sources_list]
|
| 53 |
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def read_and_textify(
|
| 56 |
files: List[str], chunk_size: int = 2 # Default chunk size set to 50
|
| 57 |
) -> Tuple[List[str], List[str]]:
|
|
|
|
| 129 |
return embeddings
|
| 130 |
|
| 131 |
|
| 132 |
+
def call_gpt4(prompt: str) -> str:
|
| 133 |
+
"""
|
| 134 |
+
Sends a prompt to the GPT-4 model and retrieves a response.
|
| 135 |
+
|
| 136 |
+
This function interacts with the OpenAI API, specifically using
|
| 137 |
+
the gpt-3.5-turbo model to generate a conversational response.
|
| 138 |
+
It simulates a conversation by providing system messages,
|
| 139 |
+
past interactions, and the latest user query.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
- prompt (str): The message from the user for which the GPT model will generate a response.
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
- str: The content of the message generated by the GPT model in response to the prompt.
|
| 146 |
+
|
| 147 |
+
Note: This function assumes that 'client' is an instance of OpenAI's client object
|
| 148 |
+
that has been properly authenticated and initialized elsewhere in your code.
|
| 149 |
+
"""
|
| 150 |
+
|
| 151 |
+
# Interact with the OpenAI API to get a response for the prompt provided
|
| 152 |
+
response = client.chat.completions.create(
|
| 153 |
+
model="gpt-3.5-turbo", # Specifies the AI model to use for the response
|
| 154 |
+
messages=[ # Constructs the context and the prompt for the AI
|
| 155 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 156 |
+
{"role": "user", "content": "Who won the world series in 2020?"},
|
| 157 |
+
{
|
| 158 |
+
"role": "assistant",
|
| 159 |
+
"content": "The Los Angeles Dodgers won the World Series in 2020."
|
| 160 |
+
},
|
| 161 |
+
{"role": "user", "content": "Where was it played?"}
|
| 162 |
+
]
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# Return the AI's response to the user's most recent prompt
|
| 166 |
+
return response.choices[0].message.content
|
| 167 |
+
|
| 168 |
+
|
| 169 |
def quantize_to_kbit(arr: Union[np.ndarray, Any], k: int = 16) -> np.ndarray:
|
| 170 |
"""Converts an array to a k-bit representation by normalizing and scaling its values.
|
| 171 |
|
|
|
|
| 288 |
# Sort the DataFrame based on the 'qim' score in descending order
|
| 289 |
refs = refs.sort_values(by="qim", ascending=False)
|
| 290 |
|
| 291 |
+
return refs
|