Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,69 +0,0 @@
|
|
| 1 |
-
#imports
|
| 2 |
-
!pip install PyPDF2
|
| 3 |
-
import PyPDF2
|
| 4 |
-
import re
|
| 5 |
-
!pip install transformers
|
| 6 |
-
import transformers
|
| 7 |
-
from transformers import pipeline
|
| 8 |
-
!pip install git+https://github.com/suno-ai/bark.git
|
| 9 |
-
from bark import SAMPLE_RATE, generate_audio, preload_models
|
| 10 |
-
from scipy.io.wavfile import write as write_wav
|
| 11 |
-
from IPython.display import Audio
|
| 12 |
-
|
| 13 |
-
def abstract_to_audio(insert_pdf):
|
| 14 |
-
# Extracting the abstract text from the article pdf
|
| 15 |
-
def extract_abstract(pdf_file):
|
| 16 |
-
# Open the PDF file in read-binary mode
|
| 17 |
-
with open(pdf_file, 'rb') as file:
|
| 18 |
-
# Create a PDF reader object
|
| 19 |
-
pdf_reader = PyPDF2.PdfReader(file)
|
| 20 |
-
|
| 21 |
-
# Initialize an empty string to store abstract content
|
| 22 |
-
abstract_text = ''
|
| 23 |
-
|
| 24 |
-
# Loop through each page in the PDF
|
| 25 |
-
for page_num in range(len(pdf_reader.pages)):
|
| 26 |
-
# Get the text from the current page
|
| 27 |
-
page = pdf_reader.pages[page_num]
|
| 28 |
-
text = page.extract_text()
|
| 29 |
-
|
| 30 |
-
# Use regular expression to find the "Abstract" section
|
| 31 |
-
abstract_match = re.search(r'\bAbstract\b', text, re.IGNORECASE)
|
| 32 |
-
if abstract_match:
|
| 33 |
-
# Get the text after the "Abstract" heading until the next section, indicated by "Introduction" heading
|
| 34 |
-
start_index = abstract_match.end()
|
| 35 |
-
next_section_match = re.search(r'\bIntroduction\b', text[start_index:])
|
| 36 |
-
if next_section_match:
|
| 37 |
-
end_index = start_index + next_section_match.start()
|
| 38 |
-
abstract_text = text[start_index:end_index]
|
| 39 |
-
else:
|
| 40 |
-
# If no next section found, extract text till the end
|
| 41 |
-
abstract_text = text[start_index:]
|
| 42 |
-
break # Exit loop once abstract is found
|
| 43 |
-
|
| 44 |
-
return abstract_text.strip()
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
abstract = extract_abstract(insert_pdf)
|
| 48 |
-
|
| 49 |
-
# Creating a summarization pipeline
|
| 50 |
-
model = "lidiya/bart-large-xsum-samsum"
|
| 51 |
-
pipeline1 = pipeline(task = "summarization", model = model)
|
| 52 |
-
|
| 53 |
-
# Summarizing the extracted abstract
|
| 54 |
-
summarized = pipeline1(abstract)
|
| 55 |
-
print(summarized[0]['summary_text'])
|
| 56 |
-
tss_prompt = summarized[0]['summary_text']
|
| 57 |
-
|
| 58 |
-
# Generate audio file that speaks the generated sentence using Bark
|
| 59 |
-
# download and load all models
|
| 60 |
-
preload_models()
|
| 61 |
-
|
| 62 |
-
# generate audio from text
|
| 63 |
-
text_prompt = tss_prompt
|
| 64 |
-
audio_array = generate_audio(text_prompt)
|
| 65 |
-
|
| 66 |
-
# play text in notebook
|
| 67 |
-
return Audio(audio_array, rate=SAMPLE_RATE)
|
| 68 |
-
|
| 69 |
-
my_app = gr.Interface(fn=abstract_to_audio, inputs='file', outputs='audio')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|