Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
#imports
|
2 |
-
!pip install PyPDF2
|
3 |
-
import PyPDF2
|
4 |
-
import re
|
5 |
-
!pip install transformers
|
6 |
-
import transformers
|
7 |
-
from transformers import pipeline
|
8 |
-
!pip install git+https://github.com/suno-ai/bark.git
|
9 |
-
from bark import SAMPLE_RATE, generate_audio, preload_models
|
10 |
-
from scipy.io.wavfile import write as write_wav
|
11 |
-
from IPython.display import Audio
|
12 |
-
|
13 |
-
def abstract_to_audio(insert_pdf):
|
14 |
-
# Extracting the abstract text from the article pdf
|
15 |
-
def extract_abstract(pdf_file):
|
16 |
-
# Open the PDF file in read-binary mode
|
17 |
-
with open(pdf_file, 'rb') as file:
|
18 |
-
# Create a PDF reader object
|
19 |
-
pdf_reader = PyPDF2.PdfReader(file)
|
20 |
-
|
21 |
-
# Initialize an empty string to store abstract content
|
22 |
-
abstract_text = ''
|
23 |
-
|
24 |
-
# Loop through each page in the PDF
|
25 |
-
for page_num in range(len(pdf_reader.pages)):
|
26 |
-
# Get the text from the current page
|
27 |
-
page = pdf_reader.pages[page_num]
|
28 |
-
text = page.extract_text()
|
29 |
-
|
30 |
-
# Use regular expression to find the "Abstract" section
|
31 |
-
abstract_match = re.search(r'\bAbstract\b', text, re.IGNORECASE)
|
32 |
-
if abstract_match:
|
33 |
-
# Get the text after the "Abstract" heading until the next section, indicated by "Introduction" heading
|
34 |
-
start_index = abstract_match.end()
|
35 |
-
next_section_match = re.search(r'\bIntroduction\b', text[start_index:])
|
36 |
-
if next_section_match:
|
37 |
-
end_index = start_index + next_section_match.start()
|
38 |
-
abstract_text = text[start_index:end_index]
|
39 |
-
else:
|
40 |
-
# If no next section found, extract text till the end
|
41 |
-
abstract_text = text[start_index:]
|
42 |
-
break # Exit loop once abstract is found
|
43 |
-
|
44 |
-
return abstract_text.strip()
|
45 |
-
|
46 |
-
|
47 |
-
abstract = extract_abstract(insert_pdf)
|
48 |
-
|
49 |
-
# Creating a summarization pipeline
|
50 |
-
model = "lidiya/bart-large-xsum-samsum"
|
51 |
-
pipeline1 = pipeline(task = "summarization", model = model)
|
52 |
-
|
53 |
-
# Summarizing the extracted abstract
|
54 |
-
summarized = pipeline1(abstract)
|
55 |
-
print(summarized[0]['summary_text'])
|
56 |
-
tss_prompt = summarized[0]['summary_text']
|
57 |
-
|
58 |
-
# Generate audio file that speaks the generated sentence using Bark
|
59 |
-
# download and load all models
|
60 |
-
preload_models()
|
61 |
-
|
62 |
-
# generate audio from text
|
63 |
-
text_prompt = tss_prompt
|
64 |
-
audio_array = generate_audio(text_prompt)
|
65 |
-
|
66 |
-
# play text in notebook
|
67 |
-
return Audio(audio_array, rate=SAMPLE_RATE)
|
68 |
-
|
69 |
-
my_app = gr.Interface(fn=abstract_to_audio, inputs='file', outputs='audio')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|