|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModelForImageClassification |
|
import torch |
|
from PIL import Image |
|
|
|
model_name = 'e1010101/vit-384-tongue-image' |
|
processor = AutoProcessor.from_pretrained(model_name) |
|
model = AutoModelForImageClassification.from_pretrained(model_name) |
|
|
|
def classify_image(image): |
|
inputs = processor(images=image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
probs = torch.sigmoid(logits)[0].numpy() |
|
|
|
labels = model.config.id2label.values() |
|
|
|
result = {label: float(prob) for label, prob in zip(labels, probs)} |
|
|
|
result = dict(sorted(result.items(), key=lambda item: item[1], reverse=True)) |
|
return result |
|
|
|
interface = gr.Interface( |
|
fn=classify_image, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs=gr.outputs.Label(num_top_classes=None), |
|
title="Multi-Label Image Classification", |
|
description="Upload an image to get classification results." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
interface.launch() |