llama-midi / app.py
dx2102's picture
Create app.py
1db4f6f verified
raw
history blame
5.51 kB
import random
import os
import time
from queue import Queue
from threading import Thread
import symusic
import transformers
import gradio as gr
print('\n\n\n')
print('Loading model...')
# pipe = transformers.pipeline("text-generation", model="openai-community/gpt2")
pipe = transformers.pipeline(
"text-generation",
model="dx2102/llama-midi",
torch_dtype="bfloat16",
device_map="auto",
)
print('Done')
default_prefix = '''pitch duration wait
71 1310 0
48 330 350
55 330 350
64 1310 690
74 660 690
69 1310 0
48 330 350
57 330 350
66 1310 690
67 330 350
69 330 350
71 1310 0
48 330 350
55 330 350
64 1310 690
74 660 690
69 1970 0
48 330 350
'''
default_prefix_len = default_prefix.count('\n') - 2
def postprocess(txt, path):
# saves the text representation to a midi file
txt = txt.split('\n\n')[-1]
notes = []
now = 0
# we need to ignore the invalid output by the model
try:
for line in txt.split('\n'):
pitch, duration, wait = [int(x) for x in line.split()]
# Eg. Note(time=7.47, duration=5.25, pitch=43, velocity=64, ttype='Quarter')
notes.append(symusic.core.NoteSecond(
time=now/1000,
duration=duration/1000,
pitch=int(pitch),
velocity=80,
))
now += wait
except Exception as e:
print('Ignored error:', e)
try:
track = symusic.core.TrackSecond()
track.notes = symusic.core.NoteSecondList(notes)
score = symusic.Score(ttype='Second')
score.tracks.append(track)
score.dump_midi(path)
except Exception as e:
print('Ignored error:', e)
with gr.Blocks() as demo:
chatbot_box = gr.Chatbot(type="messages", render_markdown=False, sanitize_html=False)
prefix_box = gr.Textbox(value=default_prefix, label="prefix")
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
with gr.Row():
get_audio_btn = gr.Button("Convert to audio")
get_midi_btn = gr.Button("Convert to MIDI")
audio_box = gr.Audio()
midi_box = gr.File()
piano_roll_box = gr.Image()
def user_fn(user_message, history: list):
return "", history + [{"role": "user", "content": user_message}]
def bot_fn(history: list):
prefix = history[-1]["content"]
history.append({"role": "assistant", "content": ""})
if prefix.startswith("pitch duration wait\n\n"):
history[-1]["content"] += "Generating with the given prefix...\n"
else:
history[-1]["content"] += f"Generating from scratch with a default prefix of {default_prefix_len} notes...\n"
prefix = default_prefix
queue = Queue()
class MyStreamer:
def put(self, tokens):
for token in tokens.flatten():
text = pipe.tokenizer.decode(token.item())
if text == '<|begin_of_text|>':
continue
queue.put(text)
def end(self):
queue.put(None)
def background_fn():
result = pipe(
prefix,
streamer=MyStreamer(),
max_length=1000,
temperature=0.95,
)
print('Generated text:')
print(result[0]['generated_text'])
print()
Thread(target=background_fn).start()
while True:
text = queue.get()
if text is None:
break
history[-1]["content"] += text
yield history
prefix_box.submit(user_fn, [prefix_box, chatbot_box], [prefix_box, chatbot_box], queue=False).then(
bot_fn, chatbot_box, chatbot_box
)
submit_btn.click(user_fn, [prefix_box, chatbot_box], [prefix_box, chatbot_box], queue=False).then(
bot_fn, chatbot_box, chatbot_box
)
clear_btn.click(lambda: None, None, chatbot_box, queue=False)
def get_audio_fn(history):
i = random.randint(0, 1000_000_000)
path = f'./temp/{i}.mid'
try:
postprocess(history[-1]["content"], path)
except Exception as e:
raise gr.Error(f'Error: {type(e)}, {e}')
# turn midi into audio with timidity
os.system(f'timidity ./temp/{i}.mid -Ow -o ./temp/{i}.wav')
# wav to mp3
os.system(f'lame -b 320 ./temp/{i}.wav ./temp/{i}.mp3')
return f'./temp/{i}.mp3'
get_audio_btn.click(get_audio_fn, chatbot_box, audio_box, queue=False)
def get_midi_fn(history):
i = random.randint(0, 1000_000_000)
# turn the text into midi
try:
postprocess(history[-1]["content"], f'./temp/{i}.mid')
except Exception as e:
raise gr.Error(f'Error: {type(e)}, {e}')
# also render the piano roll
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
now = 0
for line in history[-1]["content"].split('\n\n')[-1].split('\n'):
try:
pitch, duration, wait = [int(x) for x in line.split()]
except Exception as e:
continue
plt.plot([now, now+duration], [pitch, pitch], color='black')
now += wait
plt.savefig(f'./temp/{i}.svg')
return f'./temp/{i}.mid', f'./temp/{i}.svg'
get_midi_btn.click(get_midi_fn, inputs=chatbot_box, outputs=[midi_box, piano_roll_box], queue=False)
demo.launch()