Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| from opensearchpy import OpenSearch | |
| from typing import Optional | |
| from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult | |
| from open_webui.config import ( | |
| OPENSEARCH_URI, | |
| OPENSEARCH_SSL, | |
| OPENSEARCH_CERT_VERIFY, | |
| OPENSEARCH_USERNAME, | |
| OPENSEARCH_PASSWORD, | |
| ) | |
| class OpenSearchClient: | |
| def __init__(self): | |
| self.index_prefix = "open_webui" | |
| self.client = OpenSearch( | |
| hosts=[OPENSEARCH_URI], | |
| use_ssl=OPENSEARCH_SSL, | |
| verify_certs=OPENSEARCH_CERT_VERIFY, | |
| http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD), | |
| ) | |
| def _result_to_get_result(self, result) -> GetResult: | |
| ids = [] | |
| documents = [] | |
| metadatas = [] | |
| for hit in result["hits"]["hits"]: | |
| ids.append(hit["_id"]) | |
| documents.append(hit["_source"].get("text")) | |
| metadatas.append(hit["_source"].get("metadata")) | |
| return GetResult(ids=ids, documents=documents, metadatas=metadatas) | |
| def _result_to_search_result(self, result) -> SearchResult: | |
| ids = [] | |
| distances = [] | |
| documents = [] | |
| metadatas = [] | |
| for hit in result["hits"]["hits"]: | |
| ids.append(hit["_id"]) | |
| distances.append(hit["_score"]) | |
| documents.append(hit["_source"].get("text")) | |
| metadatas.append(hit["_source"].get("metadata")) | |
| return SearchResult( | |
| ids=ids, distances=distances, documents=documents, metadatas=metadatas | |
| ) | |
| def _create_index(self, index_name: str, dimension: int): | |
| body = { | |
| "mappings": { | |
| "properties": { | |
| "id": {"type": "keyword"}, | |
| "vector": { | |
| "type": "dense_vector", | |
| "dims": dimension, # Adjust based on your vector dimensions | |
| "index": true, | |
| "similarity": "faiss", | |
| "method": { | |
| "name": "hnsw", | |
| "space_type": "ip", # Use inner product to approximate cosine similarity | |
| "engine": "faiss", | |
| "ef_construction": 128, | |
| "m": 16, | |
| }, | |
| }, | |
| "text": {"type": "text"}, | |
| "metadata": {"type": "object"}, | |
| } | |
| } | |
| } | |
| self.client.indices.create(index=f"{self.index_prefix}_{index_name}", body=body) | |
| def _create_batches(self, items: list[VectorItem], batch_size=100): | |
| for i in range(0, len(items), batch_size): | |
| yield items[i : i + batch_size] | |
| def has_collection(self, index_name: str) -> bool: | |
| # has_collection here means has index. | |
| # We are simply adapting to the norms of the other DBs. | |
| return self.client.indices.exists(index=f"{self.index_prefix}_{index_name}") | |
| def delete_colleciton(self, index_name: str): | |
| # delete_collection here means delete index. | |
| # We are simply adapting to the norms of the other DBs. | |
| self.client.indices.delete(index=f"{self.index_prefix}_{index_name}") | |
| def search( | |
| self, index_name: str, vectors: list[list[float]], limit: int | |
| ) -> Optional[SearchResult]: | |
| query = { | |
| "size": limit, | |
| "_source": ["text", "metadata"], | |
| "query": { | |
| "script_score": { | |
| "query": {"match_all": {}}, | |
| "script": { | |
| "source": "cosineSimilarity(params.vector, 'vector') + 1.0", | |
| "params": { | |
| "vector": vectors[0] | |
| }, # Assuming single query vector | |
| }, | |
| } | |
| }, | |
| } | |
| result = self.client.search( | |
| index=f"{self.index_prefix}_{index_name}", body=query | |
| ) | |
| return self._result_to_search_result(result) | |
| def get_or_create_index(self, index_name: str, dimension: int): | |
| if not self.has_index(index_name): | |
| self._create_index(index_name, dimension) | |
| def get(self, index_name: str) -> Optional[GetResult]: | |
| query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]} | |
| result = self.client.search( | |
| index=f"{self.index_prefix}_{index_name}", body=query | |
| ) | |
| return self._result_to_get_result(result) | |
| def insert(self, index_name: str, items: list[VectorItem]): | |
| if not self.has_index(index_name): | |
| self._create_index(index_name, dimension=len(items[0]["vector"])) | |
| for batch in self._create_batches(items): | |
| actions = [ | |
| { | |
| "index": { | |
| "_id": item["id"], | |
| "_source": { | |
| "vector": item["vector"], | |
| "text": item["text"], | |
| "metadata": item["metadata"], | |
| }, | |
| } | |
| } | |
| for item in batch | |
| ] | |
| self.client.bulk(actions) | |
| def upsert(self, index_name: str, items: list[VectorItem]): | |
| if not self.has_index(index_name): | |
| self._create_index(index_name, dimension=len(items[0]["vector"])) | |
| for batch in self._create_batches(items): | |
| actions = [ | |
| { | |
| "index": { | |
| "_id": item["id"], | |
| "_source": { | |
| "vector": item["vector"], | |
| "text": item["text"], | |
| "metadata": item["metadata"], | |
| }, | |
| } | |
| } | |
| for item in batch | |
| ] | |
| self.client.bulk(actions) | |
| def delete(self, index_name: str, ids: list[str]): | |
| actions = [ | |
| {"delete": {"_index": f"{self.index_prefix}_{index_name}", "_id": id}} | |
| for id in ids | |
| ] | |
| self.client.bulk(body=actions) | |
| def reset(self): | |
| indices = self.client.indices.get(index=f"{self.index_prefix}_*") | |
| for index in indices: | |
| self.client.indices.delete(index=index) | |