Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -129,36 +129,39 @@ class EventAnalyzer:
|
|
129 |
|
130 |
return entities
|
131 |
|
132 |
-
|
133 |
return self.ontology.validate_pattern(text, 'temporal')
|
134 |
|
135 |
async def extract_locations(self, text):
|
136 |
-
|
|
|
|
|
|
|
137 |
pattern_locations = self.ontology.validate_pattern(text, 'location')
|
138 |
return list(set(ml_locations + pattern_locations))
|
139 |
|
140 |
async def analyze_event(self, text):
|
141 |
try:
|
142 |
# Parallel extraction
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
|
147 |
-
# Gather results
|
148 |
-
entities,
|
149 |
-
|
150 |
)
|
151 |
|
152 |
-
#
|
153 |
entities['locations'] = locations
|
154 |
-
entities['temporal'] =
|
155 |
|
156 |
# Calculate initial confidence
|
157 |
confidence = min(1.0, (
|
158 |
0.2 * bool(entities["people"]) +
|
159 |
0.2 * bool(entities["organizations"]) +
|
160 |
0.3 * bool(entities["locations"]) +
|
161 |
-
0.3 * bool(
|
162 |
))
|
163 |
|
164 |
# Find related events
|
@@ -172,7 +175,7 @@ class EventAnalyzer:
|
|
172 |
relationship_confidence = max(
|
173 |
self.relationship_engine.calculate_relationship_confidence(
|
174 |
{'entities': entities},
|
175 |
-
{'text': event[1]}
|
176 |
)
|
177 |
for event in related_events
|
178 |
)
|
@@ -285,6 +288,7 @@ def format_results(analysis_result):
|
|
285 |
"""
|
286 |
return html
|
287 |
|
|
|
288 |
async def process_input(text):
|
289 |
result = await analyzer.analyze_event(text)
|
290 |
return format_results(result)
|
@@ -299,7 +303,7 @@ demo = gr.Interface(
|
|
299 |
)
|
300 |
],
|
301 |
outputs=gr.HTML(),
|
302 |
-
title="
|
303 |
description="Analyze text to extract entities, assess confidence, and identify key event information with relationship tracking.",
|
304 |
css=css,
|
305 |
theme=gr.themes.Soft(),
|
|
|
129 |
|
130 |
return entities
|
131 |
|
132 |
+
def extract_temporal(self, text):
|
133 |
return self.ontology.validate_pattern(text, 'temporal')
|
134 |
|
135 |
async def extract_locations(self, text):
|
136 |
+
# First await the entities result
|
137 |
+
entities = await self.extract_entities(text)
|
138 |
+
ml_locations = entities.get('locations', [])
|
139 |
+
# Get pattern-based locations
|
140 |
pattern_locations = self.ontology.validate_pattern(text, 'location')
|
141 |
return list(set(ml_locations + pattern_locations))
|
142 |
|
143 |
async def analyze_event(self, text):
|
144 |
try:
|
145 |
# Parallel extraction
|
146 |
+
entities_future = self.extract_entities(text)
|
147 |
+
temporal_data = self.extract_temporal(text) # This is synchronous now
|
148 |
+
locations_future = self.extract_locations(text)
|
149 |
|
150 |
+
# Gather async results
|
151 |
+
entities, locations = await asyncio.gather(
|
152 |
+
entities_future, locations_future
|
153 |
)
|
154 |
|
155 |
+
# Add temporal and locations to entities
|
156 |
entities['locations'] = locations
|
157 |
+
entities['temporal'] = temporal_data
|
158 |
|
159 |
# Calculate initial confidence
|
160 |
confidence = min(1.0, (
|
161 |
0.2 * bool(entities["people"]) +
|
162 |
0.2 * bool(entities["organizations"]) +
|
163 |
0.3 * bool(entities["locations"]) +
|
164 |
+
0.3 * bool(temporal_data)
|
165 |
))
|
166 |
|
167 |
# Find related events
|
|
|
175 |
relationship_confidence = max(
|
176 |
self.relationship_engine.calculate_relationship_confidence(
|
177 |
{'entities': entities},
|
178 |
+
{'text': event[1]}
|
179 |
)
|
180 |
for event in related_events
|
181 |
)
|
|
|
288 |
"""
|
289 |
return html
|
290 |
|
291 |
+
# Modified to properly handle async
|
292 |
async def process_input(text):
|
293 |
result = await analyzer.analyze_event(text)
|
294 |
return format_results(result)
|
|
|
303 |
)
|
304 |
],
|
305 |
outputs=gr.HTML(),
|
306 |
+
title="ToY Event Analysis System",
|
307 |
description="Analyze text to extract entities, assess confidence, and identify key event information with relationship tracking.",
|
308 |
css=css,
|
309 |
theme=gr.themes.Soft(),
|