|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
MAX_MAX_NEW_TOKENS = 1024 |
|
DEFAULT_MAX_NEW_TOKENS = 256 |
|
MAX_INPUT_TOKEN_LENGTH = 512 |
|
|
|
DESCRIPTION = """\ |
|
# OpenELM-3B |
|
|
|
This Space demonstrates [OpenELM-3B](apple/OpenELM-3B) by Apple. Please, check the original model card for details. |
|
You can see the other models of the OpenELM family [here](https://huggingface.co/apple/OpenELM) |
|
The following Colab notebooks are available: |
|
* [OpenELM-3B (GPU)](https://gist.github.com/Norod/4f11bb36bea5c548d18f10f9d7ec09b0) |
|
* [OpenELM-270M (CPU)](https://gist.github.com/Norod/5a311a8e0a774b5c35919913545b7af4) |
|
|
|
You might also be intrested in checking out Apple's [CoreNet Github page](https://github.com/apple/corenet?tab=readme-ov-file). |
|
|
|
If you duplicate this space, make sure you have access to [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) |
|
because this model uses it as a tokenizer. |
|
|
|
Note: While the user interface is of a chatbot for convenience, this model is the base |
|
model and is not fine-tuned for chatbot tasks or instruction following tasks. As such, |
|
the model is not provided a chat history and will generate text based on the last given prompt. |
|
""" |
|
|
|
LICENSE = """ |
|
<p/> |
|
|
|
--- |
|
As a derivate work of [OpenELM-3B](apple/OpenELM-3B) by Apple, |
|
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-3B/blob/main/LICENSE). |
|
""" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
model_id = "apple/OpenELM-3B" |
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True) |
|
tokenizer_id = "meta-llama/Llama-2-7b-hf" |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) |
|
if tokenizer.pad_token == None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.4, |
|
) -> Iterator[str]: |
|
|
|
input_ids = tokenizer([message], return_tensors="pt").input_ids |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.4, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["A recepie for a chocolate cake:"], |
|
["Can you explain briefly to me what is the Python programming language?"], |
|
["Explain the plot of Cinderella in a sentence."], |
|
["Question: What is the capital of France?\nAnswer:"], |
|
["Question: I am very tired, what should I do?\nAnswer:"], |
|
], |
|
) |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") |
|
chat_interface.render() |
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|