File size: 2,815 Bytes
fc1301c
 
9aa57c1
 
 
 
 
b65471a
 
 
 
bf0b05e
 
 
 
 
 
 
 
b65471a
fc1301c
 
9eaa1af
b65471a
 
 
9eaa1af
b65471a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc1301c
b65471a
fc1301c
b65471a
fc1301c
 
b65471a
fc1301c
b65471a
 
 
 
fc1301c
 
 
b65471a
 
 
 
 
 
fc1301c
 
b65471a
 
 
 
 
 
 
fc1301c
 
b65471a
fc1301c
b65471a
fc1301c
b65471a
 
fc1301c
b65471a
 
 
fc1301c
 
b65471a
 
 
fc1301c
b65471a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import gradio as gr
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
)
import os
from threading import Thread
import spaces
import time
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

token = os.environ["HF_TOKEN"]


model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Phi-3-mini-128k-instruct",
    token=token,
    trust_remote_code=True,
)
tok = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", token=token)
terminators = [
    tok.eos_token_id,
]

if torch.cuda.is_available():
    device = torch.device("cuda")
    print(f"Using GPU: {torch.cuda.get_device_name(device)}")
else:
    device = torch.device("cpu")
    print("Using CPU")

model = model.to(device)
# Dispatch Errors


@spaces.GPU(duration=60)
def chat(message, history, temperature, do_sample, max_tokens):
    chat = []
    for item in history:
        chat.append({"role": "user", "content": item[0]})
        if item[1] is not None:
            chat.append({"role": "assistant", "content": item[1]})
    chat.append({"role": "user", "content": message})
    messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
    model_inputs = tok([messages], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(
        tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )

    if temperature == 0:
        generate_kwargs["do_sample"] = False

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_text = ""
    for new_text in streamer:
        partial_text += new_text
        yield partial_text

    yield partial_text


demo = gr.ChatInterface(
    fn=chat,
    examples=[["Write me a poem about Machine Learning."]],
    # multimodal=False,
    additional_inputs_accordion=gr.Accordion(
        label="⚙️ Parameters", open=False, render=False
    ),
    additional_inputs=[
        gr.Slider(
            minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
        ),
        gr.Checkbox(label="Sampling", value=True),
        gr.Slider(
            minimum=128,
            maximum=4096,
            step=1,
            value=512,
            label="Max new tokens",
            render=False,
        ),
    ],
    stop_btn="Stop Generation",
    title="Chat With LLMs",
    description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)",
)
demo.launch()