File size: 3,115 Bytes
fc1301c
 
9aa57c1
 
 
 
 
b65471a
 
 
 
bf0b05e
 
 
 
 
 
 
 
a6d2bf9
 
 
 
 
 
 
 
b65471a
fc1301c
 
9eaa1af
b65471a
 
 
9eaa1af
b65471a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc1301c
b65471a
fc1301c
b65471a
fc1301c
 
b65471a
fc1301c
b65471a
 
 
 
fc1301c
 
 
b65471a
 
 
 
 
 
fc1301c
 
b65471a
 
 
 
 
 
 
fc1301c
 
b65471a
fc1301c
b65471a
fc1301c
b65471a
 
fc1301c
b65471a
 
 
fc1301c
 
b65471a
 
a6d2bf9
fc1301c
b65471a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
)
import os
from threading import Thread
import spaces
import time
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

DESCRIPTION = """\
# Phi-3-mini-4k-instruct

This Space demonstrates [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) by Microsoft. Please, check the original model card for details.

For additional detail on the model, including a link to the arXiv paper, refer to the [Hugging Face Paper page for Phi 3](https://huggingface.co/papers/2404.14219) .
"""

token = os.environ["HF_TOKEN"]


model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Phi-3-mini-128k-instruct",
    token=token,
    trust_remote_code=True,
)
tok = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", token=token)
terminators = [
    tok.eos_token_id,
]

if torch.cuda.is_available():
    device = torch.device("cuda")
    print(f"Using GPU: {torch.cuda.get_device_name(device)}")
else:
    device = torch.device("cpu")
    print("Using CPU")

model = model.to(device)
# Dispatch Errors


@spaces.GPU(duration=60)
def chat(message, history, temperature, do_sample, max_tokens):
    chat = []
    for item in history:
        chat.append({"role": "user", "content": item[0]})
        if item[1] is not None:
            chat.append({"role": "assistant", "content": item[1]})
    chat.append({"role": "user", "content": message})
    messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
    model_inputs = tok([messages], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(
        tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )

    if temperature == 0:
        generate_kwargs["do_sample"] = False

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_text = ""
    for new_text in streamer:
        partial_text += new_text
        yield partial_text

    yield partial_text


demo = gr.ChatInterface(
    fn=chat,
    examples=[["Write me a poem about Machine Learning."]],
    # multimodal=False,
    additional_inputs_accordion=gr.Accordion(
        label="⚙️ Parameters", open=False, render=False
    ),
    additional_inputs=[
        gr.Slider(
            minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
        ),
        gr.Checkbox(label="Sampling", value=True),
        gr.Slider(
            minimum=128,
            maximum=4096,
            step=1,
            value=512,
            label="Max new tokens",
            render=False,
        ),
    ],
    stop_btn="Stop Generation",
    title="Chat With LLMs",
    description=DESCRIPTION,
)
demo.launch()