File size: 10,193 Bytes
66ac839
f4f5e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ac839
f4f5e89
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gradio as gr
import anthropic
import json
import requests
import warnings
import logging
import os
import pandas as pd
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Initialize Anthropoc client with API key
client = anthropic.Client(api_key=os.getenv('ANTHROPIC_API_KEY'))
MODEL_NAME = "claude-3-5-sonnet-20240620"

# Define the base URL for the FastAPI service
BASE_URL = "https://dwb2023-blackbird-svc.hf.space"

# Define tools
tools = [
    {
        "name": "get_user",
        "description": "Looks up a user by email, phone, or username.",
        "input_schema": {
            "type": "object",
            "properties": {
                "key": {
                    "type": "string",
                    "enum": ["email", "phone", "username"],
                    "description": "The attribute to search for a user by (email, phone, or username)."
                },
                "value": {
                    "type": "string",
                    "description": "The value to match for the specified attribute."
                }
            },
            "required": ["key", "value"]
        }
    },
    {
        "name": "get_order_by_id",
        "description": "Retrieves the details of a specific order based on the order ID.",
        "input_schema": {
            "type": "object",
            "properties": {
                "order_id": {
                    "type": "string",
                    "description": "The unique identifier for the order."
                }
            },
            "required": ["order_id"]
        }
    },
    {
        "name": "get_customer_orders",
        "description": "Retrieves the list of orders belonging to a user based on a user's customer id.",
        "input_schema": {
            "type": "object",
            "properties": {
                "customer_id": {
                    "type": "string",
                    "description": "The customer_id belonging to the user"
                }
            },
            "required": ["customer_id"]
        }
    },
    {
        "name": "cancel_order",
        "description": "Cancels an order based on a provided order_id. Only orders that are 'processing' can be cancelled.",
        "input_schema": {
            "type": "object",
            "properties": {
                "order_id": {
                    "type": "string",
                    "description": "The order_id pertaining to a particular order"
                }
            },
            "required": ["order_id"]
        }
    },
    {
        "name": "update_user_contact",
        "description": "Updates a user's email and/or phone number.",
        "input_schema": {
            "type": "object",
            "properties": {
                "user_id": {
                    "type": "string",
                    "description": "The ID of the user"
                },
                "email": {
                    "type": "string",
                    "description": "The new email address of the user"
                },
                "phone": {
                    "type": "string",
                    "description": "The new phone number of the user"
                }
            },
            "required": ["user_id"]
        }
    },
    {
        "name": "get_user_info",
        "description": "Retrieves a user's information along with their order history based on email, phone, or username.",
        "input_schema": {
            "type": "object",
            "properties": {
                "key": {
                    "type": "string",
                    "enum": ["email", "phone", "username"],
                    "description": "The attribute to search for a user by (email, phone, or username)."
                },
                "value": {
                    "type": "string",
                    "description": "The value to match for the specified attribute."
                }
            },
            "required": ["key", "value"]
        }
    }
]

# Suppress the InsecureRequestWarning
warnings.filterwarnings("ignore", category=requests.urllib3.exceptions.InsecureRequestWarning)

def process_tool_call(tool_name, tool_input):
    tool_endpoints = {
        "get_user": "get_user",
        "get_order_by_id": "get_order_by_id",
        "get_customer_orders": "get_customer_orders",
        "cancel_order": "cancel_order",
        "update_user_contact": "update_user",
        "get_user_info": "get_user_info"
    }
    
    if tool_name in tool_endpoints:
        response = requests.post(f"{BASE_URL}/{tool_endpoints[tool_name]}", json=tool_input, verify=False)
    else:
        logger.error(f"Invalid tool name: {tool_name}")
        return {"error": "Invalid tool name"}

    if response.status_code == 200:
        return response.json()
    else:
        logger.error(f"Tool call failed: {response.text}")
        return {"error": response.text}

system_prompt = """
You are a customer support chat bot for an online retailer called BlackBird.
Your job is to help users look up their account, orders, and cancel orders.
Be helpful and brief in your responses.
You have access to a set of tools, but only use them when needed.
If you do not have enough information to use a tool correctly, ask a user follow up questions to get the required inputs.
Do not call any of the tools unless you have the required data from a user.

In each conversational turn, you will begin by thinking about your response.
Once you're done, you will write a user-facing response.
"""

def simple_chat(user_message, history):
    # Reconstruct the message history
    messages = []
    for i, (user_msg, assistant_msg) in enumerate(history):
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": user_message})

    full_response = ""
    MAX_ITERATIONS = 5
    iteration_count = 0

    while iteration_count < MAX_ITERATIONS:
        try:
            logger.info(f"Sending messages to API: {json.dumps(messages, indent=2)}")
            response = client.messages.create(
                model=MODEL_NAME,
                system=system_prompt,
                max_tokens=4096,
                tools=tools,
                messages=messages,
            )

            assistant_message = response.content[0].text if isinstance(response.content, list) else response.content

            if response.stop_reason == "tool_use":
                tool_use = response.content[-1]
                tool_name = tool_use.name
                tool_input = tool_use.input

                tool_result = process_tool_call(tool_name, tool_input)

                # Add assistant message indicating tool use
                messages.append({"role": "assistant", "content": assistant_message})

                # Add user message with tool result to maintain role alternation
                messages.append({
                    "role": "user",
                    "content": json.dumps({
                        "type": "tool_result",
                        "tool_use_id": tool_use.id,
                        "content": tool_result,
                    })
                })

                full_response += f"\nUsing tool: {tool_name}\n"
                iteration_count += 1
                continue
            else:
                # Add the assistant's reply to the full response
                full_response += assistant_message
                messages.append({"role": "assistant", "content": assistant_message})
                break

        except anthropic.BadRequestError as e:
            logger.error(f"BadRequestError: {str(e)}")
            full_response = f"Error: {str(e)}"
            break
        except Exception as e:
            logger.error(f"Unexpected error: {str(e)}")
            full_response = f"An unexpected error occurred: {str(e)}"
            break

    logger.info(f"Final messages: {json.dumps(messages, indent=2)}")

    if iteration_count == MAX_ITERATIONS:
        logger.warning("Maximum iterations reached in simple_chat")

    history.append((user_message, full_response))
    return history, "", messages  # Return messages as well

def messages_to_dataframe(messages):
    data = []
    for msg in messages:
        row = {
            'role': msg['role'],
            'content': msg['content'] if isinstance(msg['content'], str) else json.dumps(msg['content']),
            'tool_use': None,
            'tool_result': None
        }
        if msg['role'] == 'assistant' and isinstance(msg['content'], list):
            for item in msg['content']:
                if isinstance(item, dict) and 'type' in item:
                    if item['type'] == 'tool_use':
                        row['tool_use'] = json.dumps(item)
                    elif item['type'] == 'tool_result':
                        row['tool_result'] = json.dumps(item)
        data.append(row)
    return pd.DataFrame(data)

def submit_message(message, history):
    history, _, messages = simple_chat(message, history)
    df = messages_to_dataframe(messages)
    print(df)  # For console output
    return history, "", df

with gr.Blocks() as demo:
    gr.Markdown("# BlackBird Customer Support Chat")
    chatbot = gr.Chatbot()
    msg = gr.Textbox(label="Your message")
    clear = gr.Button("Clear")
    df_output = gr.Dataframe(label="Conversation Analysis")

    submit_event = msg.submit(submit_message, [msg, chatbot], [chatbot, msg, df_output]).then(
        lambda: "", None, msg
    )

    example_inputs = [
        "What's the status of my orders? My Customer id is 2837622",
        "Can you confirm my customer info and order status? My email is [email protected]",
        "I'd like to cancel an order",
        "Can you update my email address to [email protected]?",
    ]

    examples = gr.Examples(
        examples=example_inputs,
        inputs=msg
    )

    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch()