Spaces:
Sleeping
Sleeping
File size: 10,193 Bytes
66ac839 f4f5e89 66ac839 f4f5e89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import gradio as gr
import anthropic
import json
import requests
import warnings
import logging
import os
import pandas as pd
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialize Anthropoc client with API key
client = anthropic.Client(api_key=os.getenv('ANTHROPIC_API_KEY'))
MODEL_NAME = "claude-3-5-sonnet-20240620"
# Define the base URL for the FastAPI service
BASE_URL = "https://dwb2023-blackbird-svc.hf.space"
# Define tools
tools = [
{
"name": "get_user",
"description": "Looks up a user by email, phone, or username.",
"input_schema": {
"type": "object",
"properties": {
"key": {
"type": "string",
"enum": ["email", "phone", "username"],
"description": "The attribute to search for a user by (email, phone, or username)."
},
"value": {
"type": "string",
"description": "The value to match for the specified attribute."
}
},
"required": ["key", "value"]
}
},
{
"name": "get_order_by_id",
"description": "Retrieves the details of a specific order based on the order ID.",
"input_schema": {
"type": "object",
"properties": {
"order_id": {
"type": "string",
"description": "The unique identifier for the order."
}
},
"required": ["order_id"]
}
},
{
"name": "get_customer_orders",
"description": "Retrieves the list of orders belonging to a user based on a user's customer id.",
"input_schema": {
"type": "object",
"properties": {
"customer_id": {
"type": "string",
"description": "The customer_id belonging to the user"
}
},
"required": ["customer_id"]
}
},
{
"name": "cancel_order",
"description": "Cancels an order based on a provided order_id. Only orders that are 'processing' can be cancelled.",
"input_schema": {
"type": "object",
"properties": {
"order_id": {
"type": "string",
"description": "The order_id pertaining to a particular order"
}
},
"required": ["order_id"]
}
},
{
"name": "update_user_contact",
"description": "Updates a user's email and/or phone number.",
"input_schema": {
"type": "object",
"properties": {
"user_id": {
"type": "string",
"description": "The ID of the user"
},
"email": {
"type": "string",
"description": "The new email address of the user"
},
"phone": {
"type": "string",
"description": "The new phone number of the user"
}
},
"required": ["user_id"]
}
},
{
"name": "get_user_info",
"description": "Retrieves a user's information along with their order history based on email, phone, or username.",
"input_schema": {
"type": "object",
"properties": {
"key": {
"type": "string",
"enum": ["email", "phone", "username"],
"description": "The attribute to search for a user by (email, phone, or username)."
},
"value": {
"type": "string",
"description": "The value to match for the specified attribute."
}
},
"required": ["key", "value"]
}
}
]
# Suppress the InsecureRequestWarning
warnings.filterwarnings("ignore", category=requests.urllib3.exceptions.InsecureRequestWarning)
def process_tool_call(tool_name, tool_input):
tool_endpoints = {
"get_user": "get_user",
"get_order_by_id": "get_order_by_id",
"get_customer_orders": "get_customer_orders",
"cancel_order": "cancel_order",
"update_user_contact": "update_user",
"get_user_info": "get_user_info"
}
if tool_name in tool_endpoints:
response = requests.post(f"{BASE_URL}/{tool_endpoints[tool_name]}", json=tool_input, verify=False)
else:
logger.error(f"Invalid tool name: {tool_name}")
return {"error": "Invalid tool name"}
if response.status_code == 200:
return response.json()
else:
logger.error(f"Tool call failed: {response.text}")
return {"error": response.text}
system_prompt = """
You are a customer support chat bot for an online retailer called BlackBird.
Your job is to help users look up their account, orders, and cancel orders.
Be helpful and brief in your responses.
You have access to a set of tools, but only use them when needed.
If you do not have enough information to use a tool correctly, ask a user follow up questions to get the required inputs.
Do not call any of the tools unless you have the required data from a user.
In each conversational turn, you will begin by thinking about your response.
Once you're done, you will write a user-facing response.
"""
def simple_chat(user_message, history):
# Reconstruct the message history
messages = []
for i, (user_msg, assistant_msg) in enumerate(history):
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": user_message})
full_response = ""
MAX_ITERATIONS = 5
iteration_count = 0
while iteration_count < MAX_ITERATIONS:
try:
logger.info(f"Sending messages to API: {json.dumps(messages, indent=2)}")
response = client.messages.create(
model=MODEL_NAME,
system=system_prompt,
max_tokens=4096,
tools=tools,
messages=messages,
)
assistant_message = response.content[0].text if isinstance(response.content, list) else response.content
if response.stop_reason == "tool_use":
tool_use = response.content[-1]
tool_name = tool_use.name
tool_input = tool_use.input
tool_result = process_tool_call(tool_name, tool_input)
# Add assistant message indicating tool use
messages.append({"role": "assistant", "content": assistant_message})
# Add user message with tool result to maintain role alternation
messages.append({
"role": "user",
"content": json.dumps({
"type": "tool_result",
"tool_use_id": tool_use.id,
"content": tool_result,
})
})
full_response += f"\nUsing tool: {tool_name}\n"
iteration_count += 1
continue
else:
# Add the assistant's reply to the full response
full_response += assistant_message
messages.append({"role": "assistant", "content": assistant_message})
break
except anthropic.BadRequestError as e:
logger.error(f"BadRequestError: {str(e)}")
full_response = f"Error: {str(e)}"
break
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
full_response = f"An unexpected error occurred: {str(e)}"
break
logger.info(f"Final messages: {json.dumps(messages, indent=2)}")
if iteration_count == MAX_ITERATIONS:
logger.warning("Maximum iterations reached in simple_chat")
history.append((user_message, full_response))
return history, "", messages # Return messages as well
def messages_to_dataframe(messages):
data = []
for msg in messages:
row = {
'role': msg['role'],
'content': msg['content'] if isinstance(msg['content'], str) else json.dumps(msg['content']),
'tool_use': None,
'tool_result': None
}
if msg['role'] == 'assistant' and isinstance(msg['content'], list):
for item in msg['content']:
if isinstance(item, dict) and 'type' in item:
if item['type'] == 'tool_use':
row['tool_use'] = json.dumps(item)
elif item['type'] == 'tool_result':
row['tool_result'] = json.dumps(item)
data.append(row)
return pd.DataFrame(data)
def submit_message(message, history):
history, _, messages = simple_chat(message, history)
df = messages_to_dataframe(messages)
print(df) # For console output
return history, "", df
with gr.Blocks() as demo:
gr.Markdown("# BlackBird Customer Support Chat")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Your message")
clear = gr.Button("Clear")
df_output = gr.Dataframe(label="Conversation Analysis")
submit_event = msg.submit(submit_message, [msg, chatbot], [chatbot, msg, df_output]).then(
lambda: "", None, msg
)
example_inputs = [
"What's the status of my orders? My Customer id is 2837622",
"Can you confirm my customer info and order status? My email is [email protected]",
"I'd like to cancel an order",
"Can you update my email address to [email protected]?",
]
examples = gr.Examples(
examples=example_inputs,
inputs=msg
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()
|