dwarkesh commited on
Commit
2a11612
·
verified ·
1 Parent(s): ef5f5ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +342 -60
app.py CHANGED
@@ -1,64 +1,346 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from dataclasses import dataclass
3
+ from pathlib import Path
4
+ import json
5
+ import hashlib
6
+ import os
7
+ from typing import List, Tuple, Iterator
8
+ import assemblyai as aai
9
+ from google import generativeai
10
+ from pydub import AudioSegment
11
+ import asyncio
12
+ import io
13
+ from itertools import groupby
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ prompt = '''
16
+ You are an expert transcript editor. Your task is to enhance this transcript for maximum readability while maintaining the core message.
17
 
18
+ IMPORTANT: Respond ONLY with the enhanced transcript. Do not include any explanations, headers, or phrases like "Here is the transcript."
19
+
20
+ Note: Below you'll find an auto-generated transcript that may help with speaker identification, but focus on creating your own high-quality transcript from the audio.
21
+
22
+ Think about your job as if you were transcribing an interview for a print book where the priority is the reading audience. It should just be a total pleasure to read this as a written artifact where all the flubs and repetitions and conversational artifacts and filler words and false starts are removed, where a bunch of helpful punctuation is added. It should basically read like somebody wrote it specifically for reading rather than just something somebody said extemporaneously.
23
+
24
+ Please:
25
+ 1. Fix speaker attribution errors, especially at segment boundaries. Watch for incomplete thoughts that were likely from the previous speaker.
26
+
27
+ 2. Optimize AGGRESSIVELY for readability over verbatim accuracy:
28
+ - Readability is the most important thing!!
29
+ - Remove ALL conversational artifacts (yeah, so, I mean, etc.)
30
+ - Remove ALL filler words (um, uh, like, you know)
31
+ - Remove false starts and self-corrections completely
32
+ - Remove redundant phrases and hesitations
33
+ - Convert any indirect or rambling responses into direct statements
34
+ - Break up run-on sentences into clear, concise statements
35
+ - Maintain natural conversation flow while prioritizing clarity and directness
36
+
37
+ 3. Format the output consistently:
38
+ - Keep the "Speaker X 00:00:00" format (no brackets, no other formatting)
39
+ - DO NOT change the timestamps. You're only seeing a chunk of the full transcript, which is why your 0:00:00 is not the true beginning. Keep the timestamps as they are.
40
+ - Add TWO line breaks between speaker/timestamp and the text
41
+ - Use proper punctuation and capitalization
42
+ - Add paragraph breaks for topic changes
43
+ - When you add paragraph breaks between the same speaker's remarks, no need to restate the speaker attribution
44
+ - Don't go more than four sentences without adding a paragraph break. Be liberal with your paragraph breaks.
45
+ - Preserve distinct speaker turns
46
+
47
+ Example input:
48
+ Speaker A 00:01:15
49
+
50
+ Um, yeah, so like, I've been working on this new project at work, you know? And uh, what's really interesting is that, uh, we're seeing these amazing results with the new approach we're taking. Like, it's just, you know, it's really transforming how we do things.
51
+
52
+ And then, I mean, the thing is, uh, when we showed it to the client last week, they were just, you know, completely blown away by what we achieved. Like, they couldn't even believe it was the same system they had before.
53
+
54
+ Example output:
55
+ Speaker A 00:01:15
56
+
57
+ I've been working on this new project at work, and we're seeing amazing results with our new approach. It's really transforming how we do things.
58
+
59
+ When we showed it to the client last week, they were completely blown away by what we achieved. They couldn't believe it was the same system they had before.
60
+
61
+ Enhance the following transcript, starting directly with the speaker format:
62
+ '''
63
+
64
+
65
+ @dataclass
66
+ class Utterance:
67
+ """A single utterance from a speaker"""
68
+ speaker: str
69
+ text: str
70
+ start: int
71
+ end: int
72
+
73
+ @property
74
+ def timestamp(self) -> str:
75
+ seconds = int(self.start // 1000)
76
+ hours = seconds // 3600
77
+ minutes = (seconds % 3600) // 60
78
+ seconds = seconds % 60
79
+ return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
80
+
81
+
82
+ class Transcriber:
83
+ def __init__(self, api_key: str):
84
+ aai.settings.api_key = api_key
85
+ self.cache_dir = Path("transcripts/.cache")
86
+ self.cache_dir.mkdir(parents=True, exist_ok=True)
87
+
88
+ def get_transcript(self, audio_path: Path) -> List[Utterance]:
89
+ cache_file = self.cache_dir / f"{audio_path.stem}.json"
90
+
91
+ if cache_file.exists():
92
+ with open(cache_file) as f:
93
+ data = json.load(f)
94
+ if data["hash"] == self._get_file_hash(audio_path):
95
+ return [
96
+ Utterance(
97
+ speaker=u["speaker"],
98
+ text=u["text"],
99
+ start=u["start"],
100
+ end=u["end"]
101
+ )
102
+ for u in data["utterances"]
103
+ ]
104
+
105
+ config = aai.TranscriptionConfig(speaker_labels=True, language_code="en")
106
+ transcript = aai.Transcriber().transcribe(str(audio_path), config=config)
107
+
108
+ utterances = [
109
+ Utterance(
110
+ speaker=u.speaker,
111
+ text=u.text,
112
+ start=u.start,
113
+ end=u.end
114
+ )
115
+ for u in transcript.utterances
116
+ ]
117
+
118
+ cache_data = {
119
+ "hash": self._get_file_hash(audio_path),
120
+ "utterances": [
121
+ {
122
+ "speaker": u.speaker,
123
+ "text": u.text,
124
+ "start": u.start,
125
+ "end": u.end
126
+ }
127
+ for u in utterances
128
+ ]
129
+ }
130
+ with open(cache_file, "w") as f:
131
+ json.dump(cache_data, f, indent=2)
132
+
133
+ return utterances
134
+
135
+ def _get_file_hash(self, file_path: Path) -> str:
136
+ hash_md5 = hashlib.md5()
137
+ with open(file_path, "rb") as f:
138
+ for chunk in iter(lambda: f.read(4096), b""):
139
+ hash_md5.update(chunk)
140
+ return hash_md5.hexdigest()
141
+
142
+
143
+ class Enhancer:
144
+ def __init__(self, api_key: str):
145
+ generativeai.configure(api_key=api_key)
146
+ self.model = generativeai.GenerativeModel("gemini-2.0-flash-lite-preview-02-05")
147
+ self.prompt = prompt
148
+
149
+ async def enhance_chunks(self, chunks: List[Tuple[str, io.BytesIO]]) -> List[str]:
150
+ semaphore = asyncio.Semaphore(3)
151
+
152
+ async def process_chunk(i: int, chunk: Tuple[str, io.BytesIO]) -> str:
153
+ text, audio = chunk
154
+ async with semaphore:
155
+ audio.seek(0)
156
+ response = await self.model.generate_content_async(
157
+ [self.prompt, text, {"mime_type": "audio/mp3", "data": audio.read()}]
158
+ )
159
+ return response.text
160
+
161
+ tasks = [process_chunk(i, chunk) for i, chunk in enumerate(chunks)]
162
+ results = await asyncio.gather(*tasks)
163
+ return results
164
+
165
+
166
+ @dataclass
167
+ class SpeakerDialogue:
168
+ speaker: str
169
+ utterances: List[Utterance]
170
+
171
+ @property
172
+ def start(self) -> int:
173
+ return self.utterances[0].start
174
+
175
+ @property
176
+ def end(self) -> int:
177
+ return self.utterances[-1].end
178
+
179
+ @property
180
+ def timestamp(self) -> str:
181
+ return self.utterances[0].timestamp
182
+
183
+ def format(self, markdown: bool = False) -> str:
184
+ texts = [u.text + "\n\n" for u in self.utterances]
185
+ combined_text = ''.join(texts).rstrip()
186
+ if markdown:
187
+ return f"**Speaker {self.speaker}** *{self.timestamp}*\n\n{combined_text}"
188
+ return f"Speaker {self.speaker} {self.timestamp}\n\n{combined_text}"
189
+
190
+
191
+ def group_utterances_by_speaker(utterances: List[Utterance]) -> Iterator[SpeakerDialogue]:
192
+ for speaker, group in groupby(utterances, key=lambda u: u.speaker):
193
+ yield SpeakerDialogue(speaker=speaker, utterances=list(group))
194
+
195
+
196
+ def estimate_tokens(text: str, chars_per_token: int = 4) -> int:
197
+ return (len(text) + chars_per_token - 1) // chars_per_token
198
+
199
+
200
+ def chunk_dialogues(dialogues: Iterator[SpeakerDialogue], max_tokens: int = 2000, chars_per_token: int = 4) -> List[List[SpeakerDialogue]]:
201
+ chunks = []
202
+ current_chunk = []
203
+ current_text = ""
204
+
205
+ for dialogue in dialogues:
206
+ formatted = dialogue.format()
207
+ new_text = current_text + "\n\n" + formatted if current_text else formatted
208
+
209
+ if current_chunk and estimate_tokens(new_text, chars_per_token) > max_tokens:
210
+ chunks.append(current_chunk)
211
+ current_chunk = [dialogue]
212
+ current_text = formatted
213
+ else:
214
+ current_chunk.append(dialogue)
215
+ current_text = new_text
216
+
217
+ if current_chunk:
218
+ chunks.append(current_chunk)
219
+
220
+ return chunks
221
+
222
+
223
+ def format_chunk(dialogues: List[SpeakerDialogue], markdown: bool = False) -> str:
224
+ return "\n\n".join(dialogue.format(markdown=markdown) for dialogue in dialogues)
225
+
226
+
227
+ def prepare_audio_chunks(audio_path: Path, utterances: List[Utterance]) -> List[Tuple[str, io.BytesIO]]:
228
+ dialogues = group_utterances_by_speaker(utterances)
229
+ chunks = chunk_dialogues(dialogues)
230
+
231
+ audio = AudioSegment.from_file(audio_path)
232
+
233
+ prepared = []
234
+ for chunk in chunks:
235
+ segment = audio[chunk[0].start:chunk[-1].end]
236
+ buffer = io.BytesIO()
237
+ segment.export(buffer, format="mp3", parameters=["-q:a", "9"])
238
+ prepared.append((format_chunk(chunk, markdown=False), buffer))
239
+
240
+ return prepared
241
+
242
+
243
+ def apply_markdown_formatting(text: str) -> str:
244
+ import re
245
+ pattern = r"(Speaker \w+) (\d{2}:\d{2}:\d{2})"
246
+ return re.sub(pattern, r"**\1** *\2*", text)
247
+
248
+
249
+ def rename_speakers(text: str, speaker_map: dict) -> str:
250
+ """Replace speaker labels using the provided mapping"""
251
+ result = text
252
+ for old_name, new_name in speaker_map.items():
253
+ # Replace both markdown and plain text formats
254
+ result = result.replace(f"**Speaker {old_name}**", f"**{new_name}**")
255
+ result = result.replace(f"Speaker {old_name}", new_name)
256
+ return result
257
+
258
+
259
+ def process_audio(audio_file):
260
+ try:
261
+ # Save uploaded file with a temporary name
262
+ temp_path = Path("temp_audio")
263
+ temp_path.mkdir(exist_ok=True)
264
+ temp_file = temp_path / "temp_audio.mp3"
265
+
266
+ try:
267
+ with open(temp_file, "wb") as f:
268
+ f.write(audio_file)
269
+
270
+ # Get transcript
271
+ transcriber = Transcriber(os.getenv("ASSEMBLYAI_API_KEY"))
272
+ utterances = transcriber.get_transcript(temp_file)
273
+
274
+ # Generate original transcript
275
+ dialogues = list(group_utterances_by_speaker(utterances))
276
+ original = format_chunk(dialogues, markdown=True)
277
+
278
+ # Show original transcript immediately
279
+ yield original, ""
280
+
281
+ try:
282
+ # Enhance transcript
283
+ enhancer = Enhancer(os.getenv("GOOGLE_API_KEY"))
284
+ chunks = prepare_audio_chunks(temp_file, utterances)
285
+ enhanced = asyncio.run(enhancer.enhance_chunks(chunks))
286
+
287
+ # Format final transcript
288
+ merged = "\n\n".join(chunk.strip() for chunk in enhanced)
289
+ merged = apply_markdown_formatting(merged)
290
+
291
+ yield original, merged
292
+
293
+ except Exception as e:
294
+ yield original, f"Error: {str(e)}"
295
+
296
+ finally:
297
+ # Cleanup temp file
298
+ if os.path.exists(temp_file):
299
+ os.remove(temp_file)
300
+
301
+ except Exception as e:
302
+ if isinstance(e, gr.Error):
303
+ raise
304
+ raise gr.Error(f"Error processing audio: {str(e)}")
305
+
306
+
307
+ # Create the Gradio interface
308
+ with gr.Blocks(title="Transcript Enhancer") as demo:
309
+ gr.Markdown("""
310
+ # 🎙️ Audio Transcript Enhancer
311
+
312
+ Upload an audio file to get both an automated transcript and an enhanced version using AI.
313
+
314
+ 1. The original transcript is generated using AssemblyAI with speaker detection
315
+ 2. The enhanced version uses Google's Gemini to improve clarity and readability
316
+ """)
317
+
318
+ with gr.Row():
319
+ audio_input = gr.File(
320
+ label="Upload Audio File",
321
+ type="binary",
322
+ file_count="single",
323
+ file_types=["audio"]
324
+ )
325
+
326
+ with gr.Row():
327
+ transcribe_btn = gr.Button("📝 Transcribe & Enhance")
328
+
329
+ with gr.Row():
330
+ with gr.Column():
331
+ gr.Markdown("### Original Transcript")
332
+ original_output = gr.Markdown()
333
+
334
+ with gr.Column():
335
+ gr.Markdown("### Enhanced Transcript")
336
+ enhanced_output = gr.Markdown()
337
+
338
+ transcribe_btn.click(
339
+ fn=process_audio,
340
+ inputs=[audio_input],
341
+ outputs=[original_output, enhanced_output]
342
+ )
343
+
344
+ # Launch the app
345
  if __name__ == "__main__":
346
+ demo.launch(max_file_size=5 * gr.FileSize.GB) # Backend limit