File size: 9,663 Bytes
55e1fc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
import asyncio
from pathlib import Path
import anthropic
import os
from dataclasses import dataclass
from typing import Dict
from youtube_transcript_api import YouTubeTranscriptApi
import re
import pandas as pd

# Move relevant classes and functions into app.py
@dataclass
class ContentRequest:
    prompt_key: str

class ContentGenerator:
    def __init__(self):
        self.current_prompts = self._load_default_prompts()
        self.client = anthropic.Anthropic()
        
    def _load_default_prompts(self) -> Dict[str, str]:
        """Load default prompts and examples from files and CSVs."""
        
        # Load CSV examples
        try:
            timestamps_df = pd.read_csv("data/Timestamps.csv")
            titles_df = pd.read_csv("data/Titles & Thumbnails.csv")
            descriptions_df = pd.read_csv("data/Viral Episode Descriptions.csv")
            clips_df = pd.read_csv("data/Viral Twitter Clips.csv")
            
            # Format timestamp examples
            timestamp_examples = "\n\n".join(timestamps_df['Timestamps'].dropna().tolist())
            
            # Format title examples
            title_examples = "\n".join([
                f'Title: "{row.Titles}"\nThumbnail: "{row.Thumbnail}"'
                for _, row in titles_df.iterrows()
            ])
            
            # Format description examples
            description_examples = "\n".join([
                f'Tweet: "{row["Tweet Text"]}"'
                for _, row in descriptions_df.iterrows()
            ])
            
            # Format clip examples
            clip_examples = "\n\n".join([
                f'Tweet Text: "{row["Tweet Text"]}"\nClip Transcript: "{row["Clip Transcript"]}"'
                for _, row in clips_df.iterrows() if pd.notna(row["Tweet Text"])
            ])
            
        except Exception as e:
            print(f"Warning: Error loading CSV examples: {e}")
            timestamp_examples = ""
            title_examples = ""
            description_examples = ""
            clip_examples = ""

        # Load base prompts and inject examples
        prompts = {}
        for key in ["previews", "clips", "description", "timestamps", "titles_and_thumbnails"]:
            prompt = Path(f"prompts/{key}.txt").read_text()
            
            # Inject relevant examples
            if key == "timestamps":
                prompt = prompt.replace("{timestamps_examples}", timestamp_examples)
            elif key == "titles_and_thumbnails":
                prompt = prompt.replace("{title_examples}", title_examples)
            elif key == "description":
                prompt = prompt.replace("{description_examples}", description_examples)
            elif key == "clips":
                prompt = prompt.replace("{clip_examples}", clip_examples)
            
            prompts[key] = prompt

        return prompts

    async def generate_content(self, request: ContentRequest, transcript: str) -> str:
        """Generate content using Claude asynchronously."""
        try:
            print(f"\nFull prompt for {request.prompt_key}:")
            print("=== SYSTEM PROMPT ===")
            print(self.current_prompts[request.prompt_key])
            print("=== END SYSTEM PROMPT ===\n")
            
            response = self.client.messages.create(
                model="claude-3-5-sonnet-20241022",
                max_tokens=8192,
                system=self.current_prompts[request.prompt_key],
                messages=[{"role": "user", "content": f"Process this transcript:\n\n{transcript}"}]
            )
            
            if response and hasattr(response, 'content'):
                return response.content[0].text
            else:
                return f"Error: Unexpected response structure for {request.prompt_key}"
                
        except Exception as e:
            return f"Error generating content: {str(e)}"

def extract_video_id(url: str) -> str:
    """Extract video ID from various YouTube URL formats."""
    match = re.search(
        r"(?:youtube\.com\/watch\?v=|youtu\.be\/|youtube\.com\/embed\/|youtube\.com\/v\/)([A-Za-z0-9_-]+)",
        url
    )
    return match.group(1) if match else None

def get_transcript(video_id: str) -> str:
    """Get transcript from YouTube video ID."""
    try:
        transcript = YouTubeTranscriptApi.list_transcripts(video_id).find_transcript(["en"])
        return " ".join(entry["text"] for entry in transcript.fetch())
    except Exception as e:
        return f"Error fetching transcript: {str(e)}"

class TranscriptProcessor:
    def __init__(self):
        self.generator = ContentGenerator()

    def _get_youtube_transcript(self, url: str) -> str:
        """Get transcript from YouTube URL."""
        try:
            if video_id := extract_video_id(url):
                return get_transcript(video_id)
            raise Exception("Invalid YouTube URL")
        except Exception as e:
            raise Exception(f"Error fetching YouTube transcript: {str(e)}")

    async def process_transcript(self, input_text: str):
        """Process input and generate all content."""
        try:
            transcript = (
                self._get_youtube_transcript(input_text)
                if any(x in input_text for x in ["youtube.com", "youtu.be"])
                else input_text
            )

            # Process each type sequentially
            sections = {}
            for key in ["titles_and_thumbnails", "description", "previews", "clips", "timestamps"]:
                result = await self.generator.generate_content(ContentRequest(key), transcript)
                sections[key] = result

            # Combine into markdown with H2 headers
            markdown = f"""
## Titles and Thumbnails

{sections['titles_and_thumbnails']}

## Twitter Description

{sections['description']}

## Preview Clips

{sections['previews']}

## Twitter Clips

{sections['clips']}

## Timestamps

{sections['timestamps']}
"""
            return markdown

        except Exception as e:
            return f"Error processing input: {str(e)}"

    def update_prompts(self, *values) -> str:
        """Update the current session's prompts."""
        self.generator.current_prompts.update(zip(
            ["previews", "clips", "description", "timestamps", "titles_and_thumbnails"],
            values
        ))
        return "Prompts updated for this session!"

def create_interface():
    """Create the Gradio interface."""
    processor = TranscriptProcessor()
    
    with gr.Blocks(title="Podcast Content Generator") as app:
        gr.Markdown(
            """
            # Podcast Content Generator
            Generate preview clips, timestamps, descriptions and more from podcast transcripts or YouTube videos.
            
            Simply paste a YouTube URL or raw transcript text to get started!
            """
        )
        
        with gr.Tab("Generate Content"):
            input_text = gr.Textbox(
                label="Input", 
                placeholder="YouTube URL or transcript text...",
                lines=10
            )
            submit_btn = gr.Button("Generate Content")
            
            output = gr.Markdown()  # Single markdown output

            async def process_wrapper(text):
                print("Process wrapper started")
                print(f"Input text: {text[:100]}...")
                
                try:
                    result = await processor.process_transcript(text)
                    print("Process completed, got results")
                    return result
                except Exception as e:
                    print(f"Error in process_wrapper: {str(e)}")
                    return f"# Error\n\n{str(e)}"

            submit_btn.click(
                fn=process_wrapper,
                inputs=input_text,
                outputs=output,
                queue=True
            )

        with gr.Tab("Customize Prompts"):
            gr.Markdown(
                """
                ## Customize Generation Prompts
                Here you can experiment with different prompts during your session.
                Changes will remain active until you reload the page.
                
                Tip: Copy your preferred prompts somewhere safe if you want to reuse them later!
                """
            )

            prompt_inputs = [
                gr.Textbox(
                    label=f"{key.replace('_', ' ').title()} Prompt",
                    lines=10,
                    value=processor.generator.current_prompts[key]
                )
                for key in [
                    "previews",
                    "clips", 
                    "description",
                    "timestamps",
                    "titles_and_thumbnails"
                ]
            ]
            status = gr.Textbox(label="Status", interactive=False)

            # Update prompts when they change
            for prompt in prompt_inputs:
                prompt.change(
                    fn=processor.update_prompts,
                    inputs=prompt_inputs,
                    outputs=[status]
                )

            # Reset button
            reset_btn = gr.Button("Reset to Default Prompts")
            reset_btn.click(
                fn=lambda: (
                    processor.update_prompts(*processor.generator.current_prompts.values()),
                    *processor.generator.current_prompts.values(),
                ),
                outputs=[status] + prompt_inputs,
            )

    return app

if __name__ == "__main__":
    create_interface().launch()