File size: 9,663 Bytes
55e1fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import gradio as gr
import asyncio
from pathlib import Path
import anthropic
import os
from dataclasses import dataclass
from typing import Dict
from youtube_transcript_api import YouTubeTranscriptApi
import re
import pandas as pd
# Move relevant classes and functions into app.py
@dataclass
class ContentRequest:
prompt_key: str
class ContentGenerator:
def __init__(self):
self.current_prompts = self._load_default_prompts()
self.client = anthropic.Anthropic()
def _load_default_prompts(self) -> Dict[str, str]:
"""Load default prompts and examples from files and CSVs."""
# Load CSV examples
try:
timestamps_df = pd.read_csv("data/Timestamps.csv")
titles_df = pd.read_csv("data/Titles & Thumbnails.csv")
descriptions_df = pd.read_csv("data/Viral Episode Descriptions.csv")
clips_df = pd.read_csv("data/Viral Twitter Clips.csv")
# Format timestamp examples
timestamp_examples = "\n\n".join(timestamps_df['Timestamps'].dropna().tolist())
# Format title examples
title_examples = "\n".join([
f'Title: "{row.Titles}"\nThumbnail: "{row.Thumbnail}"'
for _, row in titles_df.iterrows()
])
# Format description examples
description_examples = "\n".join([
f'Tweet: "{row["Tweet Text"]}"'
for _, row in descriptions_df.iterrows()
])
# Format clip examples
clip_examples = "\n\n".join([
f'Tweet Text: "{row["Tweet Text"]}"\nClip Transcript: "{row["Clip Transcript"]}"'
for _, row in clips_df.iterrows() if pd.notna(row["Tweet Text"])
])
except Exception as e:
print(f"Warning: Error loading CSV examples: {e}")
timestamp_examples = ""
title_examples = ""
description_examples = ""
clip_examples = ""
# Load base prompts and inject examples
prompts = {}
for key in ["previews", "clips", "description", "timestamps", "titles_and_thumbnails"]:
prompt = Path(f"prompts/{key}.txt").read_text()
# Inject relevant examples
if key == "timestamps":
prompt = prompt.replace("{timestamps_examples}", timestamp_examples)
elif key == "titles_and_thumbnails":
prompt = prompt.replace("{title_examples}", title_examples)
elif key == "description":
prompt = prompt.replace("{description_examples}", description_examples)
elif key == "clips":
prompt = prompt.replace("{clip_examples}", clip_examples)
prompts[key] = prompt
return prompts
async def generate_content(self, request: ContentRequest, transcript: str) -> str:
"""Generate content using Claude asynchronously."""
try:
print(f"\nFull prompt for {request.prompt_key}:")
print("=== SYSTEM PROMPT ===")
print(self.current_prompts[request.prompt_key])
print("=== END SYSTEM PROMPT ===\n")
response = self.client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=8192,
system=self.current_prompts[request.prompt_key],
messages=[{"role": "user", "content": f"Process this transcript:\n\n{transcript}"}]
)
if response and hasattr(response, 'content'):
return response.content[0].text
else:
return f"Error: Unexpected response structure for {request.prompt_key}"
except Exception as e:
return f"Error generating content: {str(e)}"
def extract_video_id(url: str) -> str:
"""Extract video ID from various YouTube URL formats."""
match = re.search(
r"(?:youtube\.com\/watch\?v=|youtu\.be\/|youtube\.com\/embed\/|youtube\.com\/v\/)([A-Za-z0-9_-]+)",
url
)
return match.group(1) if match else None
def get_transcript(video_id: str) -> str:
"""Get transcript from YouTube video ID."""
try:
transcript = YouTubeTranscriptApi.list_transcripts(video_id).find_transcript(["en"])
return " ".join(entry["text"] for entry in transcript.fetch())
except Exception as e:
return f"Error fetching transcript: {str(e)}"
class TranscriptProcessor:
def __init__(self):
self.generator = ContentGenerator()
def _get_youtube_transcript(self, url: str) -> str:
"""Get transcript from YouTube URL."""
try:
if video_id := extract_video_id(url):
return get_transcript(video_id)
raise Exception("Invalid YouTube URL")
except Exception as e:
raise Exception(f"Error fetching YouTube transcript: {str(e)}")
async def process_transcript(self, input_text: str):
"""Process input and generate all content."""
try:
transcript = (
self._get_youtube_transcript(input_text)
if any(x in input_text for x in ["youtube.com", "youtu.be"])
else input_text
)
# Process each type sequentially
sections = {}
for key in ["titles_and_thumbnails", "description", "previews", "clips", "timestamps"]:
result = await self.generator.generate_content(ContentRequest(key), transcript)
sections[key] = result
# Combine into markdown with H2 headers
markdown = f"""
## Titles and Thumbnails
{sections['titles_and_thumbnails']}
## Twitter Description
{sections['description']}
## Preview Clips
{sections['previews']}
## Twitter Clips
{sections['clips']}
## Timestamps
{sections['timestamps']}
"""
return markdown
except Exception as e:
return f"Error processing input: {str(e)}"
def update_prompts(self, *values) -> str:
"""Update the current session's prompts."""
self.generator.current_prompts.update(zip(
["previews", "clips", "description", "timestamps", "titles_and_thumbnails"],
values
))
return "Prompts updated for this session!"
def create_interface():
"""Create the Gradio interface."""
processor = TranscriptProcessor()
with gr.Blocks(title="Podcast Content Generator") as app:
gr.Markdown(
"""
# Podcast Content Generator
Generate preview clips, timestamps, descriptions and more from podcast transcripts or YouTube videos.
Simply paste a YouTube URL or raw transcript text to get started!
"""
)
with gr.Tab("Generate Content"):
input_text = gr.Textbox(
label="Input",
placeholder="YouTube URL or transcript text...",
lines=10
)
submit_btn = gr.Button("Generate Content")
output = gr.Markdown() # Single markdown output
async def process_wrapper(text):
print("Process wrapper started")
print(f"Input text: {text[:100]}...")
try:
result = await processor.process_transcript(text)
print("Process completed, got results")
return result
except Exception as e:
print(f"Error in process_wrapper: {str(e)}")
return f"# Error\n\n{str(e)}"
submit_btn.click(
fn=process_wrapper,
inputs=input_text,
outputs=output,
queue=True
)
with gr.Tab("Customize Prompts"):
gr.Markdown(
"""
## Customize Generation Prompts
Here you can experiment with different prompts during your session.
Changes will remain active until you reload the page.
Tip: Copy your preferred prompts somewhere safe if you want to reuse them later!
"""
)
prompt_inputs = [
gr.Textbox(
label=f"{key.replace('_', ' ').title()} Prompt",
lines=10,
value=processor.generator.current_prompts[key]
)
for key in [
"previews",
"clips",
"description",
"timestamps",
"titles_and_thumbnails"
]
]
status = gr.Textbox(label="Status", interactive=False)
# Update prompts when they change
for prompt in prompt_inputs:
prompt.change(
fn=processor.update_prompts,
inputs=prompt_inputs,
outputs=[status]
)
# Reset button
reset_btn = gr.Button("Reset to Default Prompts")
reset_btn.click(
fn=lambda: (
processor.update_prompts(*processor.generator.current_prompts.values()),
*processor.generator.current_prompts.values(),
),
outputs=[status] + prompt_inputs,
)
return app
if __name__ == "__main__":
create_interface().launch() |