Spaces:
Runtime error
Runtime error
Dimitri
commited on
Commit
Β·
61d0d14
1
Parent(s):
9d9dc64
initial commit
Browse files- app.py +229 -0
- requirements.txt +13 -0
app.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from fabric.generator import AttentionBasedGenerator
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
#model_name = "dreamlike-art/dreamlike-photoreal-2.0"
|
| 10 |
+
model_name = ""
|
| 11 |
+
model_ckpt = "https://huggingface.co/Lykon/DreamShaper/blob/main/DreamShaper_7_pruned.safetensors"
|
| 12 |
+
|
| 13 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
generator = AttentionBasedGenerator(
|
| 16 |
+
model_name=model_name if model_name else None,
|
| 17 |
+
model_ckpt=model_ckpt if model_ckpt else None,
|
| 18 |
+
torch_dtype=dtype,
|
| 19 |
+
).to(device)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
css = """
|
| 23 |
+
.btn-green {
|
| 24 |
+
background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important;
|
| 25 |
+
border-color: #22c55e !important;
|
| 26 |
+
color: #166534 !important;
|
| 27 |
+
}
|
| 28 |
+
.btn-green:hover {
|
| 29 |
+
background-image: linear-gradient(to bottom right, #86efac, #86efac) !important;
|
| 30 |
+
}
|
| 31 |
+
.btn-red {
|
| 32 |
+
background: linear-gradient(to bottom right, #fda4af, #fb7185) !important;
|
| 33 |
+
border-color: #fb7185 !important;
|
| 34 |
+
color: #9f1239 !important;
|
| 35 |
+
}
|
| 36 |
+
.btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;}
|
| 37 |
+
|
| 38 |
+
/*****/
|
| 39 |
+
|
| 40 |
+
.dark .btn-green {
|
| 41 |
+
background-image: linear-gradient(to bottom right, #047857, #065f46) !important;
|
| 42 |
+
border-color: #047857 !important;
|
| 43 |
+
color: #ffffff !important;
|
| 44 |
+
}
|
| 45 |
+
.dark .btn-green:hover {
|
| 46 |
+
background-image: linear-gradient(to bottom right, #047857, #047857) !important;
|
| 47 |
+
}
|
| 48 |
+
.dark .btn-red {
|
| 49 |
+
background: linear-gradient(to bottom right, #be123c, #9f1239) !important;
|
| 50 |
+
border-color: #be123c !important;
|
| 51 |
+
color: #ffffff !important;
|
| 52 |
+
}
|
| 53 |
+
.dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;}
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
def generate_fn(
|
| 57 |
+
feedback_enabled,
|
| 58 |
+
max_feedback_imgs,
|
| 59 |
+
prompt,
|
| 60 |
+
neg_prompt,
|
| 61 |
+
liked,
|
| 62 |
+
disliked,
|
| 63 |
+
denoising_steps,
|
| 64 |
+
guidance_scale,
|
| 65 |
+
feedback_start,
|
| 66 |
+
feedback_end,
|
| 67 |
+
min_weight,
|
| 68 |
+
max_weight,
|
| 69 |
+
neg_scale,
|
| 70 |
+
batch_size,
|
| 71 |
+
seed,
|
| 72 |
+
progress=gr.Progress(track_tqdm=True),
|
| 73 |
+
):
|
| 74 |
+
try:
|
| 75 |
+
if seed < 0:
|
| 76 |
+
seed = None
|
| 77 |
+
|
| 78 |
+
max_feedback_imgs = max(0, int(max_feedback_imgs))
|
| 79 |
+
total_images = (len(liked) if liked else 0) + (len(disliked) if disliked else 0)
|
| 80 |
+
|
| 81 |
+
if not feedback_enabled:
|
| 82 |
+
liked = []
|
| 83 |
+
disliked = []
|
| 84 |
+
elif total_images > max_feedback_imgs:
|
| 85 |
+
if liked and disliked:
|
| 86 |
+
max_disliked = min(len(disliked), max_feedback_imgs // 2)
|
| 87 |
+
max_liked = min(len(liked), max_feedback_imgs - max_disliked)
|
| 88 |
+
if max_liked > len(liked):
|
| 89 |
+
max_disliked = max_feedback_imgs - max_liked
|
| 90 |
+
liked = liked[-max_liked:]
|
| 91 |
+
disliked = disliked[-max_disliked:]
|
| 92 |
+
elif liked:
|
| 93 |
+
liked = liked[-max_feedback_imgs:]
|
| 94 |
+
disliked = []
|
| 95 |
+
else:
|
| 96 |
+
liked = []
|
| 97 |
+
disliked = disliked[-max_feedback_imgs:]
|
| 98 |
+
# else: keep all feedback images
|
| 99 |
+
|
| 100 |
+
images = generator.generate(
|
| 101 |
+
prompt=prompt,
|
| 102 |
+
negative_prompt=neg_prompt,
|
| 103 |
+
liked=liked,
|
| 104 |
+
disliked=disliked,
|
| 105 |
+
denoising_steps=denoising_steps,
|
| 106 |
+
guidance_scale=guidance_scale,
|
| 107 |
+
feedback_start=feedback_start,
|
| 108 |
+
feedback_end=feedback_end,
|
| 109 |
+
min_weight=min_weight,
|
| 110 |
+
max_weight=max_weight,
|
| 111 |
+
neg_scale=neg_scale,
|
| 112 |
+
seed=seed,
|
| 113 |
+
n_images=batch_size,
|
| 114 |
+
)
|
| 115 |
+
return [(img, f"Image {i+1}") for i, img in enumerate(images)], images
|
| 116 |
+
except Exception as err:
|
| 117 |
+
raise gr.Error(str(err))
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def add_img_from_list(i, curr_imgs, all_imgs):
|
| 121 |
+
if i >= 0 and i < len(curr_imgs):
|
| 122 |
+
all_imgs.append(curr_imgs[i])
|
| 123 |
+
return all_imgs, all_imgs # return (gallery, state)
|
| 124 |
+
|
| 125 |
+
def add_img(img, all_imgs):
|
| 126 |
+
all_imgs.append(img)
|
| 127 |
+
return None, all_imgs, all_imgs
|
| 128 |
+
|
| 129 |
+
def remove_img_from_list(event: gr.SelectData, imgs):
|
| 130 |
+
if event.index >= 0 and event.index < len(imgs):
|
| 131 |
+
imgs.pop(event.index)
|
| 132 |
+
return imgs, imgs
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
with gr.Blocks(css=css) as demo:
|
| 136 |
+
|
| 137 |
+
liked_imgs = gr.State([])
|
| 138 |
+
disliked_imgs = gr.State([])
|
| 139 |
+
curr_imgs = gr.State([])
|
| 140 |
+
|
| 141 |
+
with gr.Row():
|
| 142 |
+
with gr.Column(scale=100):
|
| 143 |
+
prompt = gr.Textbox(label="Prompt")
|
| 144 |
+
neg_prompt = gr.Textbox(label="Negative prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality")
|
| 145 |
+
submit_btn = gr.Button("Generate", variant="primary", min_width="96px")
|
| 146 |
+
|
| 147 |
+
with gr.Row(equal_height=False):
|
| 148 |
+
with gr.Column():
|
| 149 |
+
denoising_steps = gr.Slider(1, 100, value=20, step=1, label="Sampling steps")
|
| 150 |
+
guidance_scale = gr.Slider(0.0, 30.0, value=6, step=0.25, label="CFG scale")
|
| 151 |
+
batch_size = gr.Slider(1, 10, value=4, step=1, label="Batch size")
|
| 152 |
+
seed = gr.Number(-1, minimum=-1, precision=0, label="Seed")
|
| 153 |
+
max_feedback_imgs = gr.Slider(0, 20, value=6, step=1, label="Max. feedback images", info="Maximum number of liked/disliked images to be used. If exceeded, only the most recent images will be used as feedback. (NOTE: large number of feedback imgs => high VRAM requirements)")
|
| 154 |
+
feedback_enabled = gr.Checkbox(True, label="Enable feedback", interactive=True)
|
| 155 |
+
|
| 156 |
+
with gr.Accordion("Liked Images", open=True):
|
| 157 |
+
liked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload liked image")
|
| 158 |
+
like_gallery = gr.Gallery(label="π Liked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
|
| 159 |
+
clear_liked_btn = gr.Button("Clear likes")
|
| 160 |
+
|
| 161 |
+
with gr.Accordion("Disliked Images", open=True):
|
| 162 |
+
disliked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload disliked image")
|
| 163 |
+
dislike_gallery = gr.Gallery(label="π Disliked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
|
| 164 |
+
clear_disliked_btn = gr.Button("Clear dislikes")
|
| 165 |
+
|
| 166 |
+
with gr.Accordion("Feedback parameters", open=False):
|
| 167 |
+
feedback_start = gr.Slider(0.0, 1.0, value=0.0, label="Feedback start", info="Fraction of denoising steps starting from which to use max. feedback weight.")
|
| 168 |
+
feedback_end = gr.Slider(0.0, 1.0, value=0.8, label="Feedback end", info="Up to what fraction of denoising steps to use max. feedback weight.")
|
| 169 |
+
feedback_min_weight = gr.Slider(0.0, 1.0, value=0.0, label="Feedback min. weight", info="Attention weight of feedback images when turned off (set to 0.0 to disable)")
|
| 170 |
+
feedback_max_weight = gr.Slider(0.0, 1.0, value=0.8, label="Feedback max. weight", info="Attention weight of feedback images when turned on (set to 0.0 to disable)")
|
| 171 |
+
feedback_neg_scale = gr.Slider(0.0, 1.0, value=0.5, label="Neg. feedback scale", info="Attention weight of disliked images relative to liked images (set to 0.0 to disable negative feedback)")
|
| 172 |
+
|
| 173 |
+
with gr.Column():
|
| 174 |
+
gallery = gr.Gallery(label="Generated images")
|
| 175 |
+
|
| 176 |
+
like_btns = []
|
| 177 |
+
dislike_btns = []
|
| 178 |
+
with gr.Row():
|
| 179 |
+
for i in range(0, 2):
|
| 180 |
+
like_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-green")
|
| 181 |
+
like_btns.append(like_btn)
|
| 182 |
+
with gr.Row():
|
| 183 |
+
for i in range(2, 4):
|
| 184 |
+
like_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-green")
|
| 185 |
+
like_btns.append(like_btn)
|
| 186 |
+
with gr.Row():
|
| 187 |
+
for i in range(0, 2):
|
| 188 |
+
dislike_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-red")
|
| 189 |
+
dislike_btns.append(dislike_btn)
|
| 190 |
+
with gr.Row():
|
| 191 |
+
for i in range(2, 4):
|
| 192 |
+
dislike_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-red")
|
| 193 |
+
dislike_btns.append(dislike_btn)
|
| 194 |
+
|
| 195 |
+
generate_params = [
|
| 196 |
+
feedback_enabled,
|
| 197 |
+
max_feedback_imgs,
|
| 198 |
+
prompt,
|
| 199 |
+
neg_prompt,
|
| 200 |
+
liked_imgs,
|
| 201 |
+
disliked_imgs,
|
| 202 |
+
denoising_steps,
|
| 203 |
+
guidance_scale,
|
| 204 |
+
feedback_start,
|
| 205 |
+
feedback_end,
|
| 206 |
+
feedback_min_weight,
|
| 207 |
+
feedback_max_weight,
|
| 208 |
+
feedback_neg_scale,
|
| 209 |
+
batch_size,
|
| 210 |
+
seed,
|
| 211 |
+
]
|
| 212 |
+
submit_btn.click(generate_fn, generate_params, [gallery, curr_imgs], queue=True)
|
| 213 |
+
|
| 214 |
+
for i, like_btn in enumerate(like_btns):
|
| 215 |
+
like_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, liked_imgs], [like_gallery, liked_imgs], queue=False)
|
| 216 |
+
for i, dislike_btn in enumerate(dislike_btns):
|
| 217 |
+
dislike_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
|
| 218 |
+
|
| 219 |
+
like_gallery.select(remove_img_from_list, [liked_imgs], [like_gallery, liked_imgs], queue=False)
|
| 220 |
+
dislike_gallery.select(remove_img_from_list, [disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
|
| 221 |
+
|
| 222 |
+
liked_img_input.upload(add_img, [liked_img_input, liked_imgs], [liked_img_input, like_gallery, liked_imgs], queue=False)
|
| 223 |
+
disliked_img_input.upload(add_img, [disliked_img_input, disliked_imgs], [disliked_img_input, dislike_gallery, disliked_imgs], queue=False)
|
| 224 |
+
|
| 225 |
+
clear_liked_btn.click(lambda: [None, None], None, [liked_imgs, like_gallery], queue=False)
|
| 226 |
+
clear_disliked_btn.click(lambda: [None, None], None, [disliked_imgs, dislike_gallery], queue=False)
|
| 227 |
+
|
| 228 |
+
demo.queue(8)
|
| 229 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==0.18.0
|
| 2 |
+
diffusers==0.17.1
|
| 3 |
+
torch==2.0.1
|
| 4 |
+
transformers>=4.30.2
|
| 5 |
+
hydra-core
|
| 6 |
+
matplotlib
|
| 7 |
+
pandas
|
| 8 |
+
tqdm
|
| 9 |
+
Pillow
|
| 10 |
+
ftfy
|
| 11 |
+
regex
|
| 12 |
+
clip @ git+https://github.com/openai/CLIP.git
|
| 13 |
+
fabric @ git+https://github.com/sd-fabric/fabric.git
|