import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification def predict_rooms(new_students, new_temperature): # Load the model and tokenizer model_name = "AI" # Replace with the name or path of the model you want to use tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Convert the input to tokens inputs = tokenizer.encode_plus( "Number of students: {}, Temperature: {}".format(new_students, new_temperature), padding="max_length", truncation=True, max_length=64, return_tensors="pt" ) # Make the prediction with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_rooms = torch.argmax(logits, dim=1).item() return predicted_rooms def greet(name): return "Hello " + name + "!" iface = gr.Interface( fn=[predict_rooms, greet], inputs=[["number", "number"], "text"], outputs=["number", "text"], title="Room Prediction", description="Predict the number of rooms based on the number of students and temperature, and greet the user." ) iface.launch()