app.py
Browse files
app.py
CHANGED
|
@@ -20,11 +20,10 @@ while iter_count < max_iters:
|
|
| 20 |
# Compute the predicted output
|
| 21 |
y_pred = [Theta0 + Theta1 * x1[i] + Theta2 * x2[i] for i in range(len(x1))]
|
| 22 |
|
| 23 |
-
|
| 24 |
# Compute the errors
|
| 25 |
errors = [y_pred[i] - y_actual[i] for i in range(len(x1))]
|
| 26 |
|
| 27 |
-
# Update Theta0 and
|
| 28 |
Theta0 -= alpha * sum(errors) / len(x1)
|
| 29 |
Theta1 -= alpha * sum([errors[i] * x1[i] for i in range(len(x1))]) / len(x1)
|
| 30 |
Theta2 -= alpha * sum([errors[i] * x2[i] for i in range(len(x2))]) / len(x2)
|
|
@@ -34,7 +33,7 @@ while iter_count < max_iters:
|
|
| 34 |
|
| 35 |
# Print the cost function every 100 iterations
|
| 36 |
if iter_count % 100 == 0:
|
| 37 |
-
print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}".format(iter_count, cost, Theta0, Theta1, Theta2))
|
| 38 |
|
| 39 |
# Check for convergence (if the cost is decreasing by less than 0.0001)
|
| 40 |
if iter_count > 0 and abs(cost - prev_cost) < 0.0001:
|
|
@@ -45,7 +44,7 @@ while iter_count < max_iters:
|
|
| 45 |
iter_count += 1
|
| 46 |
prev_cost = cost
|
| 47 |
|
| 48 |
-
# Print the final values of Theta0 and
|
| 49 |
-
print("Final values: Theta0 = {}, Theta1 = {}".format(Theta0, Theta1, Theta2))
|
| 50 |
-
print("Final Cost: Cost= {}".format(cost))
|
| 51 |
print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))
|
|
|
|
| 20 |
# Compute the predicted output
|
| 21 |
y_pred = [Theta0 + Theta1 * x1[i] + Theta2 * x2[i] for i in range(len(x1))]
|
| 22 |
|
|
|
|
| 23 |
# Compute the errors
|
| 24 |
errors = [y_pred[i] - y_actual[i] for i in range(len(x1))]
|
| 25 |
|
| 26 |
+
# Update Theta0, Theta1, and Theta2
|
| 27 |
Theta0 -= alpha * sum(errors) / len(x1)
|
| 28 |
Theta1 -= alpha * sum([errors[i] * x1[i] for i in range(len(x1))]) / len(x1)
|
| 29 |
Theta2 -= alpha * sum([errors[i] * x2[i] for i in range(len(x2))]) / len(x2)
|
|
|
|
| 33 |
|
| 34 |
# Print the cost function every 100 iterations
|
| 35 |
if iter_count % 100 == 0:
|
| 36 |
+
print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0, Theta1, Theta2))
|
| 37 |
|
| 38 |
# Check for convergence (if the cost is decreasing by less than 0.0001)
|
| 39 |
if iter_count > 0 and abs(cost - prev_cost) < 0.0001:
|
|
|
|
| 44 |
iter_count += 1
|
| 45 |
prev_cost = cost
|
| 46 |
|
| 47 |
+
# Print the final values of Theta0, Theta1, and Theta2
|
| 48 |
+
print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0, Theta1, Theta2))
|
| 49 |
+
print("Final Cost: Cost = {}".format(cost))
|
| 50 |
print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))
|