durrani commited on
Commit
e113a71
·
1 Parent(s): 6514fb4
Files changed (1) hide show
  1. app.py +14 -60
app.py CHANGED
@@ -1,60 +1,14 @@
1
- # Input data
2
- x1 = torch.tensor([50, 60, 70, 80, 90])
3
- x2 = torch.tensor([20, 21, 22, 23, 24])
4
- y_actual = torch.tensor([30, 35, 40, 45, 50])
5
-
6
- # Learning rate and maximum number of iterations
7
- alpha = 0.01
8
- max_iters = 1000
9
-
10
- # Initial values for Theta0, Theta1, and Theta2
11
- Theta0 = torch.tensor(0.0, requires_grad=True)
12
- Theta1 = torch.tensor(0.0, requires_grad=True)
13
- Theta2 = torch.tensor(0.0, requires_grad=True)
14
-
15
- # Start the iteration counter
16
- iter_count = 0
17
-
18
- # Loop until convergence or maximum number of iterations
19
- while iter_count < max_iters:
20
- # Compute the predicted output
21
- y_pred = Theta0 + Theta1 * x1 + Theta2 * x2
22
-
23
- # Compute the errors
24
- errors = y_pred - y_actual
25
-
26
- # Compute the cost function
27
- cost = torch.sum(errors ** 2) / (2 * len(x1))
28
-
29
- # Print the cost function every 100 iterations
30
- if iter_count % 100 == 0:
31
- print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0.item(), Theta1.item(),
32
- Theta2.item()))
33
-
34
- # Check for convergence (if the cost is decreasing by less than 0.0001)
35
- if iter_count > 0 and torch.abs(cost - prev_cost) < 0.0001:
36
- print("Converged after {} iterations".format(iter_count))
37
- break
38
-
39
- # Perform automatic differentiation to compute gradients
40
- cost.backward()
41
-
42
- # Update Theta0, Theta1, and Theta2 using gradient descent
43
- with torch.no_grad():
44
- Theta0 -= alpha * Theta0.grad
45
- Theta1 -= alpha * Theta1.grad
46
- Theta2 -= alpha * Theta2.grad
47
-
48
- # Reset gradients for the next iteration
49
- Theta0.grad.zero_()
50
- Theta1.grad.zero_()
51
- Theta2.grad.zero_()
52
-
53
- # Update the iteration counter and previous cost
54
- iter_count += 1
55
- prev_cost = cost
56
-
57
- # Print the final values of Theta0, Theta1, and Theta2
58
- print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item()))
59
- print("Final Cost: Cost = {}".format(cost.item()))
60
- print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))
 
1
+ pip install numpy
2
+ pip install gradio
3
+ import numpy as np
4
+ import gradio as gr
5
+ #function to predict the input hours
6
+ def predict_score(hours):
7
+ #hours = np.array(hours)
8
+ pred_score = -0.5738734424645411 + 2.1659122905141825*hours
9
+ return pred_score #np.round(pred_score[0], 2)
10
+ input = gr.inputs.Number(label='Number of Hours studied')
11
+ output = gr.outputs.Textbox(label='Predicted Score')
12
+ gr.Interface( fn=predict_score,
13
+ inputs=input,
14
+ outputs=output).launch();