durrani commited on
Commit
a448ea8
·
1 Parent(s): ab6decf
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -5,12 +5,13 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
  model_name = "AI" # Replace with the name or path of the model you want to use
6
  tokenizer = AutoTokenizer.from_pretrained("AI")
7
  model = AutoModelForSequenceClassification.from_pretrained("AI")
 
8
  # Values for the new scenario
9
  new_students = int(input("Enter the number of students in the new scenario: "))
10
  new_temperature = int(input("Enter the temperature in the new scenario: "))
11
 
12
  # Convert the input to tokens
13
- inputs = tokenizer.encode(
14
  "Number of students: {}, Temperature: {}".format(new_students, new_temperature),
15
  padding="max_length",
16
  truncation=True,
@@ -20,7 +21,7 @@ inputs = tokenizer.encode(
20
 
21
  # Make the prediction
22
  with torch.no_grad():
23
- outputs = model(inputs)
24
  logits = outputs.logits
25
  predicted_rooms = torch.argmax(logits, dim=1).item()
26
 
 
5
  model_name = "AI" # Replace with the name or path of the model you want to use
6
  tokenizer = AutoTokenizer.from_pretrained("AI")
7
  model = AutoModelForSequenceClassification.from_pretrained("AI")
8
+
9
  # Values for the new scenario
10
  new_students = int(input("Enter the number of students in the new scenario: "))
11
  new_temperature = int(input("Enter the temperature in the new scenario: "))
12
 
13
  # Convert the input to tokens
14
+ inputs = tokenizer.encode_plus(
15
  "Number of students: {}, Temperature: {}".format(new_students, new_temperature),
16
  padding="max_length",
17
  truncation=True,
 
21
 
22
  # Make the prediction
23
  with torch.no_grad():
24
+ outputs = model(**inputs)
25
  logits = outputs.logits
26
  predicted_rooms = torch.argmax(logits, dim=1).item()
27