durrani commited on
Commit
8b0bd94
·
1 Parent(s): 1749704
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -7,7 +7,7 @@ y_actual = [30, 35, 40, 45, 50]
7
  alpha = 0.01
8
  max_iters = 1000
9
 
10
- # Initial values for Theta0 and Theta1
11
  Theta0 = 0
12
  Theta1 = 0
13
  Theta2 = 0
@@ -22,24 +22,25 @@ while iter_count < max_iters:
22
 
23
  # Compute the errors
24
  errors = [y_pred[i] - y_actual[i] for i in range(len(x1))]
25
-
26
  # Update Theta0, Theta1, and Theta2
27
  Theta0 -= alpha * sum(errors) / len(x1)
28
  Theta1 -= alpha * sum([errors[i] * x1[i] for i in range(len(x1))]) / len(x1)
29
  Theta2 -= alpha * sum([errors[i] * x2[i] for i in range(len(x2))]) / len(x2)
30
-
31
  # Compute the cost function
32
  cost = sum([(y_pred[i] - y_actual[i]) ** 2 for i in range(len(x1))]) / (2 * len(x1))
33
-
34
  # Print the cost function every 100 iterations
35
  if iter_count % 100 == 0:
36
- print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0, Theta1, Theta2))
37
-
 
38
  # Check for convergence (if the cost is decreasing by less than 0.0001)
39
  if iter_count > 0 and abs(cost - prev_cost) < 0.0001:
40
  print("Converged after {} iterations".format(iter_count))
41
  break
42
-
43
  # Update the iteration counter and previous cost
44
  iter_count += 1
45
  prev_cost = cost
 
7
  alpha = 0.01
8
  max_iters = 1000
9
 
10
+ # Initial values for Theta0, Theta1, and Theta2
11
  Theta0 = 0
12
  Theta1 = 0
13
  Theta2 = 0
 
22
 
23
  # Compute the errors
24
  errors = [y_pred[i] - y_actual[i] for i in range(len(x1))]
25
+
26
  # Update Theta0, Theta1, and Theta2
27
  Theta0 -= alpha * sum(errors) / len(x1)
28
  Theta1 -= alpha * sum([errors[i] * x1[i] for i in range(len(x1))]) / len(x1)
29
  Theta2 -= alpha * sum([errors[i] * x2[i] for i in range(len(x2))]) / len(x2)
30
+
31
  # Compute the cost function
32
  cost = sum([(y_pred[i] - y_actual[i]) ** 2 for i in range(len(x1))]) / (2 * len(x1))
33
+
34
  # Print the cost function every 100 iterations
35
  if iter_count % 100 == 0:
36
+ print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0, Theta1,
37
+ Theta2))
38
+
39
  # Check for convergence (if the cost is decreasing by less than 0.0001)
40
  if iter_count > 0 and abs(cost - prev_cost) < 0.0001:
41
  print("Converged after {} iterations".format(iter_count))
42
  break
43
+
44
  # Update the iteration counter and previous cost
45
  iter_count += 1
46
  prev_cost = cost