durrani commited on
Commit
6efbfeb
·
1 Parent(s): 5e9c0ab
Files changed (1) hide show
  1. app.py +23 -23
app.py CHANGED
@@ -1,35 +1,35 @@
1
- # Create the dataset
2
- data = {
3
- 'num_students': [500, 600, 700, 800, 900],
4
- 'temperature': [20, 21, 22, 23, 24],
5
- 'num_rooms': [30, 35, 40, 45, 50]
6
- }
7
 
8
- # Split the dataset into features (X) and target (y)
9
- X = [[1, num_students, temperature] for num_students, temperature in zip(data['num_students'], data['temperature'])]
10
- y = data['num_rooms']
11
-
12
- # Calculate the coefficients using normal equations
13
- XTX = [[sum(x[i] * x[j] for x in X) for j in range(len(X[0]))] for i in range(len(X[0]))]
14
- XTy = [sum(X[i][j] * y[i] for i in range(len(X))) for j in range(len(X[0]))]
15
-
16
- coefficients = [0] * len(X[0])
17
- for i in range(len(X[0])):
18
- coefficients[i] = sum(XTX[i][j] * XTy[j] for j in range(len(X[0])))
19
-
20
- # Print the coefficients
21
- print("Coefficients:", coefficients)
22
 
23
  # Values for the new scenario
24
- new_students =int(input("ENTER NEW STUDETNS : ")) # Number of students in the new scenario
25
- new_temperature =int(input("ENTER NEW TEMPERATURE : ")) # Temperature in the new scenario
26
 
27
  # Create the feature array for the new scenario
28
  new_scenario = [1, new_students, new_temperature]
29
 
 
 
 
 
 
 
 
 
 
 
30
  # Make the prediction
31
- predicted_rooms = sum(coefficients[i] * new_scenario[i] for i in range(len(new_scenario)))
 
 
 
32
 
 
33
  print("Number of students:", new_students)
34
  print("Temperature:", new_temperature)
35
  print("Predicted number of rooms:", predicted_rooms)
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
 
 
 
3
 
4
+ # Load the model and tokenizer
5
+ model_name = "your_model_name" # Replace with the name of the model you want to use
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
 
 
 
 
 
 
 
 
 
 
8
 
9
  # Values for the new scenario
10
+ new_students = int(input("Enter new number of students: ")) # Number of students in the new scenario
11
+ new_temperature = int(input("Enter new temperature: ")) # Temperature in the new scenario
12
 
13
  # Create the feature array for the new scenario
14
  new_scenario = [1, new_students, new_temperature]
15
 
16
+ # Convert the input to tokens
17
+ inputs = tokenizer.encode_plus(
18
+ "Number of students: {}, Temperature: {}".format(new_students, new_temperature),
19
+ add_special_tokens=True,
20
+ padding="max_length",
21
+ truncation=True,
22
+ max_length=64,
23
+ return_tensors="pt"
24
+ )
25
+
26
  # Make the prediction
27
+ with torch.no_grad():
28
+ outputs = model(**inputs)
29
+ logits = outputs.logits
30
+ predicted_rooms = torch.argmax(logits).item()
31
 
32
+ # Print the results
33
  print("Number of students:", new_students)
34
  print("Temperature:", new_temperature)
35
  print("Predicted number of rooms:", predicted_rooms)