durrani commited on
Commit
193f105
·
1 Parent(s): 6a32c67
Files changed (1) hide show
  1. app.py +0 -60
app.py CHANGED
@@ -12,63 +12,3 @@ output = gr.outputs.Textbox(label='Predicted Score')
12
  gr.Interface( fn=predict_score,
13
  inputs=input,
14
  outputs=output).launch();
15
- # Input data
16
- x1 = torch.tensor([50, 60, 70, 80, 90])
17
- x2 = torch.tensor([20, 21, 22, 23, 24])
18
- y_actual = torch.tensor([30, 35, 40, 45, 50])
19
-
20
- # Learning rate and maximum number of iterations
21
- alpha = 0.01
22
- max_iters = 1000
23
-
24
- # Initial values for Theta0, Theta1, and Theta2
25
- Theta0 = torch.tensor(0.0, requires_grad=True)
26
- Theta1 = torch.tensor(0.0, requires_grad=True)
27
- Theta2 = torch.tensor(0.0, requires_grad=True)
28
-
29
- # Start the iteration counter
30
- iter_count = 0
31
-
32
- # Loop until convergence or maximum number of iterations
33
- while iter_count < max_iters:
34
- # Compute the predicted output
35
- y_pred = Theta0 + Theta1 * x1 + Theta2 * x2
36
-
37
- # Compute the errors
38
- errors = y_pred - y_actual
39
-
40
- # Compute the cost function
41
- cost = torch.sum(errors ** 2) / (2 * len(x1))
42
-
43
- # Print the cost function every 100 iterations
44
- if iter_count % 100 == 0:
45
- print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0.item(), Theta1.item(),
46
- Theta2.item()))
47
-
48
- # Check for convergence (if the cost is decreasing by less than 0.0001)
49
- if iter_count > 0 and torch.abs(cost - prev_cost) < 0.0001:
50
- print("Converged after {} iterations".format(iter_count))
51
- break
52
-
53
- # Perform automatic differentiation to compute gradients
54
- cost.backward()
55
-
56
- # Update Theta0, Theta1, and Theta2 using gradient descent
57
- with torch.no_grad():
58
- Theta0 -= alpha * Theta0.grad
59
- Theta1 -= alpha * Theta1.grad
60
- Theta2 -= alpha * Theta2.grad
61
-
62
- # Reset gradients for the next iteration
63
- Theta0.grad.zero_()
64
- Theta1.grad.zero_()
65
- Theta2.grad.zero_()
66
-
67
- # Update the iteration counter and previous cost
68
- iter_count += 1
69
- prev_cost = cost
70
-
71
- # Print the final values of Theta0, Theta1, and Theta2
72
- print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item()))
73
- print("Final Cost: Cost = {}".format(cost.item()))
74
- print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))
 
12
  gr.Interface( fn=predict_score,
13
  inputs=input,
14
  outputs=output).launch();