import torch import tqdm import k_diffusion.sampling from k_diffusion.sampling import default_noise_sampler,to_d, get_sigmas_karras from tqdm.auto import trange @torch.no_grad() def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None): """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023) Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]} If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list """ extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) step_id = 0 def heun_step(x, old_sigma, new_sigma, second_order=True): nonlocal step_id denoised = model(x, old_sigma * s_in, **extra_args) d = to_d(x, old_sigma, denoised) if callback is not None: callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised}) dt = new_sigma - old_sigma if new_sigma == 0 or not second_order: # Euler method x = x + d * dt else: # Heun's method x_2 = x + d * dt denoised_2 = model(x_2, new_sigma * s_in, **extra_args) d_2 = to_d(x_2, new_sigma, denoised_2) d_prime = (d + d_2) / 2 x = x + d_prime * dt step_id += 1 return x steps = sigmas.shape[0] - 1 if restart_list is None: if steps >= 20: restart_steps = 9 restart_times = 1 if steps >= 36: restart_steps = steps // 4 restart_times = 2 sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device) restart_list = {0.1: [restart_steps + 1, restart_times, 2]} else: restart_list = {} restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()} step_list = [] for i in range(len(sigmas) - 1): step_list.append((sigmas[i], sigmas[i + 1])) if i + 1 in restart_list: restart_steps, restart_times, restart_max = restart_list[i + 1] min_idx = i + 1 max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0)) if max_idx < min_idx: sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1] while restart_times > 0: restart_times -= 1 step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])]) last_sigma = None for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable): if last_sigma is None: last_sigma = old_sigma elif last_sigma < old_sigma: x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5 x = heun_step(x, old_sigma, new_sigma) last_sigma = new_sigma return x def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler): alpha_cumprod = 1 / ((sigma * sigma) + 1) alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1) alpha = (alpha_cumprod / alpha_cumprod_prev) mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt()) if sigma_prev > 0: mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev) return mu def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None): extra_args = {} if extra_args is None else extra_args noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): denoised = model(x, sigmas[i] * s_in, **extra_args) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler) if sigmas[i + 1] != 0: x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0) return x @torch.no_grad() def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step) @torch.no_grad() def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): extra_args = {} if extra_args is None else extra_args noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): denoised = model(x, sigmas[i] * s_in, **extra_args) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) x = denoised if sigmas[i + 1] > 0: x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1]) return x @torch.no_grad() def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/ extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) s_end = sigmas[-1] for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat if sigmas[i + 1] == s_end: # Euler method x = x + d * dt elif sigmas[i + 2] == s_end: # Heun's method x_2 = x + d * dt denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) d_2 = to_d(x_2, sigmas[i + 1], denoised_2) w = 2 * sigmas[0] w2 = sigmas[i+1]/w w1 = 1 - w2 d_prime = d * w1 + d_2 * w2 x = x + d_prime * dt else: # Heun++ x_2 = x + d * dt denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) d_2 = to_d(x_2, sigmas[i + 1], denoised_2) dt_2 = sigmas[i + 2] - sigmas[i + 1] x_3 = x_2 + d_2 * dt_2 denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args) d_3 = to_d(x_3, sigmas[i + 2], denoised_3) w = 3 * sigmas[0] w2 = sigmas[i + 1] / w w3 = sigmas[i + 2] / w w1 = 1 - w2 - w3 d_prime = w1 * d + w2 * d_2 + w3 * d_3 x = x + d_prime * dt return x