File size: 7,649 Bytes
7ef93e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import tqdm
import k_diffusion.sampling
from k_diffusion.sampling import default_noise_sampler,to_d, get_sigmas_karras
from tqdm.auto import trange
@torch.no_grad()
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
    """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)

    Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}

    If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list

    """
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    step_id = 0

    def heun_step(x, old_sigma, new_sigma, second_order=True):
        nonlocal step_id
        denoised = model(x, old_sigma * s_in, **extra_args)
        d = to_d(x, old_sigma, denoised)
        if callback is not None:
            callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
        dt = new_sigma - old_sigma
        if new_sigma == 0 or not second_order:
            # Euler method
            x = x + d * dt
        else:
            # Heun's method
            x_2 = x + d * dt
            denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
            d_2 = to_d(x_2, new_sigma, denoised_2)
            d_prime = (d + d_2) / 2
            x = x + d_prime * dt
        step_id += 1
        return x

    steps = sigmas.shape[0] - 1
    if restart_list is None:
        if steps >= 20:
            restart_steps = 9
            restart_times = 1
            if steps >= 36:
                restart_steps = steps // 4
                restart_times = 2
            sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
            restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
        else:
            restart_list = {}

    restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}

    step_list = []
    for i in range(len(sigmas) - 1):
        step_list.append((sigmas[i], sigmas[i + 1]))
        if i + 1 in restart_list:
            restart_steps, restart_times, restart_max = restart_list[i + 1]
            min_idx = i + 1
            max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
            if max_idx < min_idx:
                sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
                while restart_times > 0:
                    restart_times -= 1
                    step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])

    last_sigma = None
    for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable):
        if last_sigma is None:
            last_sigma = old_sigma
        elif last_sigma < old_sigma:
            x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
        x = heun_step(x, old_sigma, new_sigma)
        last_sigma = new_sigma

    return x


def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
    alpha_cumprod = 1 / ((sigma * sigma) + 1)
    alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
    alpha = (alpha_cumprod / alpha_cumprod_prev)

    mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
    if sigma_prev > 0:
        mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
    return mu


def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
    s_in = x.new_ones([x.shape[0]])

    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
        if sigmas[i + 1] != 0:
            x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
    return x


@torch.no_grad()
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
    return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)


@torch.no_grad()
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})

        x = denoised
        if sigmas[i + 1] > 0:
            x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
    return x

@torch.no_grad()
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
    # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    s_end = sigmas[-1]
    for i in trange(len(sigmas) - 1, disable=disable):
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
        eps = torch.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
        dt = sigmas[i + 1] - sigma_hat
        if sigmas[i + 1] == s_end:
            # Euler method
            x = x + d * dt
        elif sigmas[i + 2] == s_end:

            # Heun's method
            x_2 = x + d * dt
            denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
            d_2 = to_d(x_2, sigmas[i + 1], denoised_2)

            w = 2 * sigmas[0]
            w2 = sigmas[i+1]/w
            w1 = 1 - w2

            d_prime = d * w1 + d_2 * w2


            x = x + d_prime * dt

        else:
            # Heun++
            x_2 = x + d * dt
            denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
            d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
            dt_2 = sigmas[i + 2] - sigmas[i + 1]

            x_3 = x_2 + d_2 * dt_2
            denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
            d_3 = to_d(x_3, sigmas[i + 2], denoised_3)

            w = 3 * sigmas[0]
            w2 = sigmas[i + 1] / w
            w3 = sigmas[i + 2] / w
            w1 = 1 - w2 - w3

            d_prime = w1 * d + w2 * d_2 + w3 * d_3
            x = x + d_prime * dt
    return x