File size: 46,111 Bytes
7ef93e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from torch.nn.modules.normalization import GroupNorm

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import USE_PEFT_BACKEND, AttentionProcessor
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import (
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    Downsample2D,
    ResnetBlock2D,
    Transformer2DModel,
    UpBlock2D,
    Upsample2D,
)
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput, logging
from modules.attention_modify import CrossAttnProcessor,IPAdapterAttnProcessor


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class ControlNetXSOutput(BaseOutput):
    """
    The output of [`ControlNetXSModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            The output of the `ControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base model
            output, but is already the final output.
    """

    sample: torch.FloatTensor = None


# copied from diffusers.models.controlnet.ControlNetConditioningEmbedding
class ControlNetConditioningEmbedding(nn.Module):
    """
    Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
    [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
    training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
    convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
    (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
    model) to encode image-space conditions ... into feature maps ..."
    """

    def __init__(
        self,
        conditioning_embedding_channels: int,
        conditioning_channels: int = 3,
        block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
    ):
        super().__init__()

        self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)

        self.blocks = nn.ModuleList([])

        for i in range(len(block_out_channels) - 1):
            channel_in = block_out_channels[i]
            channel_out = block_out_channels[i + 1]
            self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
            self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))

        self.conv_out = zero_module(
            nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
        )

    def forward(self, conditioning):
        embedding = self.conv_in(conditioning)
        embedding = F.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = F.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding


class ControlNetXSModel(ModelMixin, ConfigMixin):
    r"""
    A ControlNet-XS model

    This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
    methods implemented for all models (such as downloading or saving).

    Most of parameters for this model are passed into the [`UNet2DConditionModel`] it creates. Check the documentation
    of [`UNet2DConditionModel`] for them.

    Parameters:
        conditioning_channels (`int`, defaults to 3):
            Number of channels of conditioning input (e.g. an image)
        controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
            The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
        conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
            The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
        time_embedding_input_dim (`int`, defaults to 320):
            Dimension of input into time embedding. Needs to be same as in the base model.
        time_embedding_dim (`int`, defaults to 1280):
            Dimension of output from time embedding. Needs to be same as in the base model.
        learn_embedding (`bool`, defaults to `False`):
            Whether to use time embedding of the control model. If yes, the time embedding is a linear interpolation of
            the time embeddings of the control and base model with interpolation parameter `time_embedding_mix**3`.
        time_embedding_mix (`float`, defaults to 1.0):
            Linear interpolation parameter used if `learn_embedding` is `True`. A value of 1.0 means only the
            control model's time embedding will be used. A value of 0.0 means only the base model's time embedding will be used.
        base_model_channel_sizes (`Dict[str, List[Tuple[int]]]`):
            Channel sizes of each subblock of base model. Use `gather_subblock_sizes` on your base model to compute it.
    """

    @classmethod
    def init_original(cls, base_model: UNet2DConditionModel, is_sdxl=True):
        """
        Create a ControlNetXS model with the same parameters as in the original paper (https://github.com/vislearn/ControlNet-XS).

        Parameters:
            base_model (`UNet2DConditionModel`):
                Base UNet model. Needs to be either StableDiffusion or StableDiffusion-XL.
            is_sdxl (`bool`, defaults to `True`):
                Whether passed `base_model` is a StableDiffusion-XL model.
        """

        def get_dim_attn_heads(base_model: UNet2DConditionModel, size_ratio: float, num_attn_heads: int):
            """
            Currently, diffusers can only set the dimension of attention heads (see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why).
            The original ControlNet-XS model, however, define the number of attention heads.
            That's why compute the dimensions needed to get the correct number of attention heads.
            """
            block_out_channels = [int(size_ratio * c) for c in base_model.config.block_out_channels]
            dim_attn_heads = [math.ceil(c / num_attn_heads) for c in block_out_channels]
            return dim_attn_heads

        if is_sdxl:
            return ControlNetXSModel.from_unet(
                base_model,
                time_embedding_mix=0.95,
                learn_embedding=True,
                size_ratio=0.1,
                conditioning_embedding_out_channels=(16, 32, 96, 256),
                num_attention_heads=get_dim_attn_heads(base_model, 0.1, 64),
            )
        else:
            return ControlNetXSModel.from_unet(
                base_model,
                time_embedding_mix=1.0,
                learn_embedding=True,
                size_ratio=0.0125,
                conditioning_embedding_out_channels=(16, 32, 96, 256),
                num_attention_heads=get_dim_attn_heads(base_model, 0.0125, 8),
            )

    @classmethod
    def _gather_subblock_sizes(cls, unet: UNet2DConditionModel, base_or_control: str):
        """To create correctly sized connections between base and control model, we need to know
        the input and output channels of each subblock.

        Parameters:
            unet (`UNet2DConditionModel`):
                Unet of which the subblock channels sizes are to be gathered.
            base_or_control (`str`):
                Needs to be either "base" or "control". If "base", decoder is also considered.
        """
        if base_or_control not in ["base", "control"]:
            raise ValueError("`base_or_control` needs to be either `base` or `control`")

        channel_sizes = {"down": [], "mid": [], "up": []}

        # input convolution
        channel_sizes["down"].append((unet.conv_in.in_channels, unet.conv_in.out_channels))

        # encoder blocks
        for module in unet.down_blocks:
            if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
                for r in module.resnets:
                    channel_sizes["down"].append((r.in_channels, r.out_channels))
                if module.downsamplers:
                    channel_sizes["down"].append(
                        (module.downsamplers[0].channels, module.downsamplers[0].out_channels)
                    )
            else:
                raise ValueError(f"Encountered unknown module of type {type(module)} while creating ControlNet-XS.")

        # middle block
        channel_sizes["mid"].append((unet.mid_block.resnets[0].in_channels, unet.mid_block.resnets[0].out_channels))

        # decoder blocks
        if base_or_control == "base":
            for module in unet.up_blocks:
                if isinstance(module, (CrossAttnUpBlock2D, UpBlock2D)):
                    for r in module.resnets:
                        channel_sizes["up"].append((r.in_channels, r.out_channels))
                else:
                    raise ValueError(
                        f"Encountered unknown module of type {type(module)} while creating ControlNet-XS."
                    )

        return channel_sizes

    @register_to_config
    def __init__(
        self,
        conditioning_channels: int = 3,
        conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
        controlnet_conditioning_channel_order: str = "rgb",
        time_embedding_input_dim: int = 320,
        time_embedding_dim: int = 1280,
        time_embedding_mix: float = 1.0,
        learn_embedding: bool = False,
        base_model_channel_sizes: Dict[str, List[Tuple[int]]] = {
            "down": [
                (4, 320),
                (320, 320),
                (320, 320),
                (320, 320),
                (320, 640),
                (640, 640),
                (640, 640),
                (640, 1280),
                (1280, 1280),
            ],
            "mid": [(1280, 1280)],
            "up": [
                (2560, 1280),
                (2560, 1280),
                (1920, 1280),
                (1920, 640),
                (1280, 640),
                (960, 640),
                (960, 320),
                (640, 320),
                (640, 320),
            ],
        },
        sample_size: Optional[int] = None,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        norm_num_groups: Optional[int] = 32,
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        num_attention_heads: Optional[Union[int, Tuple[int]]] = 8,
        upcast_attention: bool = False,
    ):
        super().__init__()

        # 1 - Create control unet
        self.control_model = UNet2DConditionModel(
            sample_size=sample_size,
            down_block_types=down_block_types,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            norm_num_groups=norm_num_groups,
            cross_attention_dim=cross_attention_dim,
            transformer_layers_per_block=transformer_layers_per_block,
            attention_head_dim=num_attention_heads,
            use_linear_projection=True,
            upcast_attention=upcast_attention,
            time_embedding_dim=time_embedding_dim,
        )

        # 2 - Do model surgery on control model
        # 2.1 - Allow to use the same time information as the base model
        adjust_time_dims(self.control_model, time_embedding_input_dim, time_embedding_dim)

        # 2.2 - Allow for information infusion from base model

        # We concat the output of each base encoder subblocks to the input of the next control encoder subblock
        # (We ignore the 1st element, as it represents the `conv_in`.)
        extra_input_channels = [input_channels for input_channels, _ in base_model_channel_sizes["down"][1:]]
        it_extra_input_channels = iter(extra_input_channels)

        for b, block in enumerate(self.control_model.down_blocks):
            for r in range(len(block.resnets)):
                increase_block_input_in_encoder_resnet(
                    self.control_model, block_no=b, resnet_idx=r, by=next(it_extra_input_channels)
                )

            if block.downsamplers:
                increase_block_input_in_encoder_downsampler(
                    self.control_model, block_no=b, by=next(it_extra_input_channels)
                )

        increase_block_input_in_mid_resnet(self.control_model, by=extra_input_channels[-1])

        # 2.3 - Make group norms work with modified channel sizes
        adjust_group_norms(self.control_model)

        # 3 - Gather Channel Sizes
        self.ch_inout_ctrl = ControlNetXSModel._gather_subblock_sizes(self.control_model, base_or_control="control")
        self.ch_inout_base = base_model_channel_sizes

        # 4 - Build connections between base and control model
        self.down_zero_convs_out = nn.ModuleList([])
        self.down_zero_convs_in = nn.ModuleList([])
        self.middle_block_out = nn.ModuleList([])
        self.middle_block_in = nn.ModuleList([])
        self.up_zero_convs_out = nn.ModuleList([])
        self.up_zero_convs_in = nn.ModuleList([])

        for ch_io_base in self.ch_inout_base["down"]:
            self.down_zero_convs_in.append(self._make_zero_conv(in_channels=ch_io_base[1], out_channels=ch_io_base[1]))
        for i in range(len(self.ch_inout_ctrl["down"])):
            self.down_zero_convs_out.append(
                self._make_zero_conv(self.ch_inout_ctrl["down"][i][1], self.ch_inout_base["down"][i][1])
            )

        self.middle_block_out = self._make_zero_conv(
            self.ch_inout_ctrl["mid"][-1][1], self.ch_inout_base["mid"][-1][1]
        )

        self.up_zero_convs_out.append(
            self._make_zero_conv(self.ch_inout_ctrl["down"][-1][1], self.ch_inout_base["mid"][-1][1])
        )
        for i in range(1, len(self.ch_inout_ctrl["down"])):
            self.up_zero_convs_out.append(
                self._make_zero_conv(self.ch_inout_ctrl["down"][-(i + 1)][1], self.ch_inout_base["up"][i - 1][1])
            )

        # 5 - Create conditioning hint embedding
        self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
            conditioning_embedding_channels=block_out_channels[0],
            block_out_channels=conditioning_embedding_out_channels,
            conditioning_channels=conditioning_channels,
        )

        # In the mininal implementation setting, we only need the control model up to the mid block
        del self.control_model.up_blocks
        del self.control_model.conv_norm_out
        del self.control_model.conv_out

    @classmethod
    def from_unet(
        cls,
        unet: UNet2DConditionModel,
        conditioning_channels: int = 3,
        conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
        controlnet_conditioning_channel_order: str = "rgb",
        learn_embedding: bool = False,
        time_embedding_mix: float = 1.0,
        block_out_channels: Optional[Tuple[int]] = None,
        size_ratio: Optional[float] = None,
        num_attention_heads: Optional[Union[int, Tuple[int]]] = 8,
        norm_num_groups: Optional[int] = None,
    ):
        r"""
        Instantiate a [`ControlNetXSModel`] from [`UNet2DConditionModel`].

        Parameters:
            unet (`UNet2DConditionModel`):
                The UNet model we want to control. The dimensions of the ControlNetXSModel will be adapted to it.
            conditioning_channels (`int`, defaults to 3):
                Number of channels of conditioning input (e.g. an image)
            conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
                The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
            controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
                The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
            learn_embedding (`bool`, defaults to `False`):
                Wether to use time embedding of the control model. If yes, the time embedding is a linear interpolation
                of the time embeddings of the control and base model with interpolation parameter
                `time_embedding_mix**3`.
            time_embedding_mix (`float`, defaults to 1.0):
                Linear interpolation parameter used if `learn_embedding` is `True`.
            block_out_channels (`Tuple[int]`, *optional*):
                Down blocks output channels in control model. Either this or `size_ratio` must be given.
            size_ratio (float, *optional*):
                When given, block_out_channels is set to a relative fraction of the base model's block_out_channels.
                Either this or `block_out_channels` must be given.
            num_attention_heads (`Union[int, Tuple[int]]`, *optional*):
                The dimension of the attention heads. The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
            norm_num_groups (int, *optional*, defaults to `None`):
                The number of groups to use for the normalization of the control unet. If `None`,
                `int(unet.config.norm_num_groups * size_ratio)` is taken.
        """

        # Check input
        fixed_size = block_out_channels is not None
        relative_size = size_ratio is not None
        if not (fixed_size ^ relative_size):
            raise ValueError(
                "Pass exactly one of `block_out_channels` (for absolute sizing) or `control_model_ratio` (for relative sizing)."
            )

        # Create model
        if block_out_channels is None:
            block_out_channels = [int(size_ratio * c) for c in unet.config.block_out_channels]

        # Check that attention heads and group norms match channel sizes
        # - attention heads
        def attn_heads_match_channel_sizes(attn_heads, channel_sizes):
            if isinstance(attn_heads, (tuple, list)):
                return all(c % a == 0 for a, c in zip(attn_heads, channel_sizes))
            else:
                return all(c % attn_heads == 0 for c in channel_sizes)

        num_attention_heads = num_attention_heads or unet.config.attention_head_dim
        if not attn_heads_match_channel_sizes(num_attention_heads, block_out_channels):
            raise ValueError(
                f"The dimension of attention heads ({num_attention_heads}) must divide `block_out_channels` ({block_out_channels}). If you didn't set `num_attention_heads` the default settings don't match your model. Set `num_attention_heads` manually."
            )

        # - group norms
        def group_norms_match_channel_sizes(num_groups, channel_sizes):
            return all(c % num_groups == 0 for c in channel_sizes)

        if norm_num_groups is None:
            if group_norms_match_channel_sizes(unet.config.norm_num_groups, block_out_channels):
                norm_num_groups = unet.config.norm_num_groups
            else:
                norm_num_groups = min(block_out_channels)

                if group_norms_match_channel_sizes(norm_num_groups, block_out_channels):
                    print(
                        f"`norm_num_groups` was set to `min(block_out_channels)` (={norm_num_groups}) so it divides all block_out_channels` ({block_out_channels}). Set it explicitly to remove this information."
                    )
                else:
                    raise ValueError(
                        f"`block_out_channels` ({block_out_channels}) don't match the base models `norm_num_groups` ({unet.config.norm_num_groups}). Setting `norm_num_groups` to `min(block_out_channels)` ({norm_num_groups}) didn't fix this. Pass `norm_num_groups` explicitly so it divides all block_out_channels."
                    )

        def get_time_emb_input_dim(unet: UNet2DConditionModel):
            return unet.time_embedding.linear_1.in_features

        def get_time_emb_dim(unet: UNet2DConditionModel):
            return unet.time_embedding.linear_2.out_features

        # Clone params from base unet if
        #    (i)   it's required to build SD or SDXL, and
        #    (ii)  it's not used for the time embedding (as time embedding of control model is never used), and
        #    (iii) it's not set further below anyway
        to_keep = [
            "cross_attention_dim",
            "down_block_types",
            "sample_size",
            "transformer_layers_per_block",
            "up_block_types",
            "upcast_attention",
        ]
        kwargs = {k: v for k, v in dict(unet.config).items() if k in to_keep}
        kwargs.update(block_out_channels=block_out_channels)
        kwargs.update(num_attention_heads=num_attention_heads)
        kwargs.update(norm_num_groups=norm_num_groups)

        # Add controlnetxs-specific params
        kwargs.update(
            conditioning_channels=conditioning_channels,
            controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
            time_embedding_input_dim=get_time_emb_input_dim(unet),
            time_embedding_dim=get_time_emb_dim(unet),
            time_embedding_mix=time_embedding_mix,
            learn_embedding=learn_embedding,
            base_model_channel_sizes=ControlNetXSModel._gather_subblock_sizes(unet, base_or_control="base"),
            conditioning_embedding_out_channels=conditioning_embedding_out_channels,
        )

        return cls(**kwargs)

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        return self.control_model.attn_processors

    def set_attn_processor(
        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
    ):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        self.control_model.set_attn_processor(processor, _remove_lora)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.control_model.set_default_attn_processor()

    def set_attention_slice(self, slice_size):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.

        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        self.control_model.set_attention_slice(slice_size)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (UNet2DConditionModel)):
            if value:
                module.enable_gradient_checkpointing()
            else:
                module.disable_gradient_checkpointing()

    def forward(
        self,
        base_model: UNet2DConditionModel,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: Dict,
        controlnet_cond: torch.Tensor,
        conditioning_scale: float = 1.0,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        return_dict: bool = True,
    ) -> Union[ControlNetXSOutput, Tuple]:
        """
        The [`ControlNetModel`] forward method.

        Args:
            base_model (`UNet2DConditionModel`):
                The base unet model we want to control.
            sample (`torch.FloatTensor`):
                The noisy input tensor.
            timestep (`Union[torch.Tensor, float, int]`):
                The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
                The encoder hidden states.
            controlnet_cond (`torch.FloatTensor`):
                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
            conditioning_scale (`float`, defaults to `1.0`):
                How much the control model affects the base model outputs.
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
                Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
                timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
                embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            added_cond_kwargs (`dict`):
                Additional conditions for the Stable Diffusion XL UNet.
            cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
            return_dict (`bool`, defaults to `True`):
                Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.

        Returns:
            [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
                If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
        """
        # check channel order
        channel_order = self.config.controlnet_conditioning_channel_order

        if channel_order == "rgb":
            # in rgb order by default
            ...
        elif channel_order == "bgr":
            controlnet_cond = torch.flip(controlnet_cond, dims=[1])
        else:
            raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")

        # scale control strength
        n_connections = len(self.down_zero_convs_out) + 1 + len(self.up_zero_convs_out)
        scale_list = torch.full((n_connections,), conditioning_scale)

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = base_model.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        if self.config.learn_embedding:
            ctrl_temb = self.control_model.time_embedding(t_emb, timestep_cond)
            base_temb = base_model.time_embedding(t_emb, timestep_cond)
            interpolation_param = self.config.time_embedding_mix**0.3

            temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
        else:
            temb = base_model.time_embedding(t_emb)

        # added time & text embeddings
        aug_emb = None

        if base_model.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if base_model.config.class_embed_type == "timestep":
                class_labels = base_model.time_proj(class_labels)

            class_emb = base_model.class_embedding(class_labels).to(dtype=self.dtype)
            temb = temb + class_emb

        if base_model.config.addition_embed_type is not None:
            if base_model.config.addition_embed_type == "text":
                aug_emb = base_model.add_embedding(encoder_hidden_states["states"])
            elif base_model.config.addition_embed_type == "text_image":
                raise NotImplementedError()
            elif base_model.config.addition_embed_type == "text_time":
                # SDXL - style
                if "text_embeds" not in added_cond_kwargs:
                    raise ValueError(
                        f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                    )
                text_embeds = added_cond_kwargs.get("text_embeds")
                if "time_ids" not in added_cond_kwargs:
                    raise ValueError(
                        f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                    )
                time_ids = added_cond_kwargs.get("time_ids")
                time_embeds = base_model.add_time_proj(time_ids.flatten())
                time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
                add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
                add_embeds = add_embeds.to(temb.dtype)
                aug_emb = base_model.add_embedding(add_embeds)
            elif base_model.config.addition_embed_type == "image":
                raise NotImplementedError()
            elif base_model.config.addition_embed_type == "image_hint":
                raise NotImplementedError()

        temb = temb + aug_emb if aug_emb is not None else temb

        # text embeddings
        cemb = encoder_hidden_states["states"]

        # Preparation
        guided_hint = self.controlnet_cond_embedding(controlnet_cond)

        h_ctrl = h_base = sample
        hs_base, hs_ctrl = [], []
        it_down_convs_in, it_down_convs_out, it_dec_convs_in, it_up_convs_out = map(
            iter, (self.down_zero_convs_in, self.down_zero_convs_out, self.up_zero_convs_in, self.up_zero_convs_out)
        )
        scales = iter(scale_list)

        base_down_subblocks = to_sub_blocks(base_model.down_blocks)
        ctrl_down_subblocks = to_sub_blocks(self.control_model.down_blocks)
        base_mid_subblocks = to_sub_blocks([base_model.mid_block])
        ctrl_mid_subblocks = to_sub_blocks([self.control_model.mid_block])
        base_up_subblocks = to_sub_blocks(base_model.up_blocks)

        # Cross Control
        # 0 - conv in
        h_base = base_model.conv_in(h_base)
        h_ctrl = self.control_model.conv_in(h_ctrl)
        if guided_hint is not None:
            h_ctrl += guided_hint
        h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales)  # D - add ctrl -> base

        hs_base.append(h_base)
        hs_ctrl.append(h_ctrl)

        # 1 - down
        for m_base, m_ctrl in zip(base_down_subblocks, ctrl_down_subblocks):
            h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1)  # A - concat base -> ctrl
            h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs)  # B - apply base subblock
            h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs)  # C - apply ctrl subblock
            h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales)  # D - add ctrl -> base
            hs_base.append(h_base)
            hs_ctrl.append(h_ctrl)

        # 2 - mid
        h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1)  # A - concat base -> ctrl
        for m_base, m_ctrl in zip(base_mid_subblocks, ctrl_mid_subblocks):
            h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs)  # B - apply base subblock
            h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs)  # C - apply ctrl subblock
        h_base = h_base + self.middle_block_out(h_ctrl) * next(scales)  # D - add ctrl -> base

        # 3 - up
        for i, m_base in enumerate(base_up_subblocks):
            h_base = h_base + next(it_up_convs_out)(hs_ctrl.pop()) * next(scales)  # add info from ctrl encoder
            h_base = torch.cat([h_base, hs_base.pop()], dim=1)  # concat info from base encoder+ctrl encoder
            h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs)

        h_base = base_model.conv_norm_out(h_base)
        h_base = base_model.conv_act(h_base)
        h_base = base_model.conv_out(h_base)

        if not return_dict:
            return h_base

        return ControlNetXSOutput(sample=h_base)

    def _make_zero_conv(self, in_channels, out_channels=None):
        # keep running track of channels sizes
        self.in_channels = in_channels
        self.out_channels = out_channels or in_channels

        return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0))

    @torch.no_grad()
    def _check_if_vae_compatible(self, vae: AutoencoderKL):
        condition_downscale_factor = 2 ** (len(self.config.conditioning_embedding_out_channels) - 1)
        vae_downscale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
        compatible = condition_downscale_factor == vae_downscale_factor
        return compatible, condition_downscale_factor, vae_downscale_factor


class SubBlock(nn.ModuleList):
    """A SubBlock is the largest piece of either base or control model, that is executed independently of the other model respectively.
    Before each subblock, information is concatted from base to control. And after each subblock, information is added from control to base.
    """

    def __init__(self, ms, *args, **kwargs):
        if not is_iterable(ms):
            ms = [ms]
        super().__init__(ms, *args, **kwargs)

    def forward(
        self,
        x: torch.Tensor,
        temb: torch.Tensor,
        cemb: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ):
        """Iterate through children and pass correct information to each."""
        for m in self:
            if isinstance(m, ResnetBlock2D):
                x = m(x, temb)
            elif isinstance(m, Transformer2DModel):
                x = m(x, cemb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs).sample
            elif isinstance(m, Downsample2D):
                x = m(x)
            elif isinstance(m, Upsample2D):
                x = m(x)
            else:
                raise ValueError(
                    f"Type of m is {type(m)} but should be `ResnetBlock2D`, `Transformer2DModel`,  `Downsample2D` or `Upsample2D`"
                )

        return x


def adjust_time_dims(unet: UNet2DConditionModel, in_dim: int, out_dim: int):
    unet.time_embedding.linear_1 = nn.Linear(in_dim, out_dim)


def increase_block_input_in_encoder_resnet(unet: UNet2DConditionModel, block_no, resnet_idx, by):
    """Increase channels sizes to allow for additional concatted information from base model"""
    r = unet.down_blocks[block_no].resnets[resnet_idx]
    old_norm1, old_conv1 = r.norm1, r.conv1
    # norm
    norm_args = "num_groups num_channels eps affine".split(" ")
    for a in norm_args:
        assert hasattr(old_norm1, a)
    norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
    norm_kwargs["num_channels"] += by  # surgery done here
    # conv1
    conv1_args = [
        "in_channels",
        "out_channels",
        "kernel_size",
        "stride",
        "padding",
        "dilation",
        "groups",
        "bias",
        "padding_mode",
    ]
    if not USE_PEFT_BACKEND:
        conv1_args.append("lora_layer")

    for a in conv1_args:
        assert hasattr(old_conv1, a)

    conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
    conv1_kwargs["bias"] = "bias" in conv1_kwargs  # as param, bias is a boolean, but as attr, it's a tensor.
    conv1_kwargs["in_channels"] += by  # surgery done here
    # conv_shortcut
    # as we changed the input size of the block, the input and output sizes are likely different,
    # therefore we need a conv_shortcut (simply adding won't work)
    conv_shortcut_args_kwargs = {
        "in_channels": conv1_kwargs["in_channels"],
        "out_channels": conv1_kwargs["out_channels"],
        # default arguments from resnet.__init__
        "kernel_size": 1,
        "stride": 1,
        "padding": 0,
        "bias": True,
    }
    # swap old with new modules
    unet.down_blocks[block_no].resnets[resnet_idx].norm1 = GroupNorm(**norm_kwargs)
    unet.down_blocks[block_no].resnets[resnet_idx].conv1 = (
        nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
    )
    unet.down_blocks[block_no].resnets[resnet_idx].conv_shortcut = (
        nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
    )
    unet.down_blocks[block_no].resnets[resnet_idx].in_channels += by  # surgery done here


def increase_block_input_in_encoder_downsampler(unet: UNet2DConditionModel, block_no, by):
    """Increase channels sizes to allow for additional concatted information from base model"""
    old_down = unet.down_blocks[block_no].downsamplers[0].conv

    args = [
        "in_channels",
        "out_channels",
        "kernel_size",
        "stride",
        "padding",
        "dilation",
        "groups",
        "bias",
        "padding_mode",
    ]
    if not USE_PEFT_BACKEND:
        args.append("lora_layer")

    for a in args:
        assert hasattr(old_down, a)
    kwargs = {a: getattr(old_down, a) for a in args}
    kwargs["bias"] = "bias" in kwargs  # as param, bias is a boolean, but as attr, it's a tensor.
    kwargs["in_channels"] += by  # surgery done here
    # swap old with new modules
    unet.down_blocks[block_no].downsamplers[0].conv = (
        nn.Conv2d(**kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**kwargs)
    )
    unet.down_blocks[block_no].downsamplers[0].channels += by  # surgery done here


def increase_block_input_in_mid_resnet(unet: UNet2DConditionModel, by):
    """Increase channels sizes to allow for additional concatted information from base model"""
    m = unet.mid_block.resnets[0]
    old_norm1, old_conv1 = m.norm1, m.conv1
    # norm
    norm_args = "num_groups num_channels eps affine".split(" ")
    for a in norm_args:
        assert hasattr(old_norm1, a)
    norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
    norm_kwargs["num_channels"] += by  # surgery done here
    conv1_args = [
        "in_channels",
        "out_channels",
        "kernel_size",
        "stride",
        "padding",
        "dilation",
        "groups",
        "bias",
        "padding_mode",
    ]
    if not USE_PEFT_BACKEND:
        conv1_args.append("lora_layer")

    conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
    conv1_kwargs["bias"] = "bias" in conv1_kwargs  # as param, bias is a boolean, but as attr, it's a tensor.
    conv1_kwargs["in_channels"] += by  # surgery done here
    # conv_shortcut
    # as we changed the input size of the block, the input and output sizes are likely different,
    # therefore we need a conv_shortcut (simply adding won't work)
    conv_shortcut_args_kwargs = {
        "in_channels": conv1_kwargs["in_channels"],
        "out_channels": conv1_kwargs["out_channels"],
        # default arguments from resnet.__init__
        "kernel_size": 1,
        "stride": 1,
        "padding": 0,
        "bias": True,
    }
    # swap old with new modules
    unet.mid_block.resnets[0].norm1 = GroupNorm(**norm_kwargs)
    unet.mid_block.resnets[0].conv1 = (
        nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
    )
    unet.mid_block.resnets[0].conv_shortcut = (
        nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
    )
    unet.mid_block.resnets[0].in_channels += by  # surgery done here


def adjust_group_norms(unet: UNet2DConditionModel, max_num_group: int = 32):
    def find_denominator(number, start):
        if start >= number:
            return number
        while start != 0:
            residual = number % start
            if residual == 0:
                return start
            start -= 1

    for block in [*unet.down_blocks, unet.mid_block]:
        # resnets
        for r in block.resnets:
            if r.norm1.num_groups < max_num_group:
                r.norm1.num_groups = find_denominator(r.norm1.num_channels, start=max_num_group)

            if r.norm2.num_groups < max_num_group:
                r.norm2.num_groups = find_denominator(r.norm2.num_channels, start=max_num_group)

        # transformers
        if hasattr(block, "attentions"):
            for a in block.attentions:
                if a.norm.num_groups < max_num_group:
                    a.norm.num_groups = find_denominator(a.norm.num_channels, start=max_num_group)


def is_iterable(o):
    if isinstance(o, str):
        return False
    try:
        iter(o)
        return True
    except TypeError:
        return False


def to_sub_blocks(blocks):
    if not is_iterable(blocks):
        blocks = [blocks]

    sub_blocks = []

    for b in blocks:
        if hasattr(b, "resnets"):
            if hasattr(b, "attentions") and b.attentions is not None:
                for r, a in zip(b.resnets, b.attentions):
                    sub_blocks.append([r, a])

                num_resnets = len(b.resnets)
                num_attns = len(b.attentions)

                if num_resnets > num_attns:
                    # we can have more resnets than attentions, so add each resnet as separate subblock
                    for i in range(num_attns, num_resnets):
                        sub_blocks.append([b.resnets[i]])
            else:
                for r in b.resnets:
                    sub_blocks.append([r])

        # upsamplers are part of the same subblock
        if hasattr(b, "upsamplers") and b.upsamplers is not None:
            for u in b.upsamplers:
                sub_blocks[-1].extend([u])

        # downsamplers are own subblock
        if hasattr(b, "downsamplers") and b.downsamplers is not None:
            for d in b.downsamplers:
                sub_blocks.append([d])

    return list(map(SubBlock, sub_blocks))


def zero_module(module):
    for p in module.parameters():
        nn.init.zeros_(p)
    return module