# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Callable, List, Optional, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import logging from .modeling_utils import ModelMixin logger = logging.get_logger(__name__) class MultiAdapter(ModelMixin): r""" MultiAdapter is a wrapper model that contains multiple adapter models and merges their outputs according to user-assigned weighting. This model inherits from [`ModelMixin`]. Check the superclass documentation for common methods such as downloading or saving. Args: adapters (`List[T2IAdapter]`, *optional*, defaults to None): A list of `T2IAdapter` model instances. """ def __init__(self, adapters: List["T2IAdapter"]): super(MultiAdapter, self).__init__() self.num_adapter = len(adapters) self.adapters = nn.ModuleList(adapters) if len(adapters) == 0: raise ValueError("Expecting at least one adapter") if len(adapters) == 1: raise ValueError("For a single adapter, please use the `T2IAdapter` class instead of `MultiAdapter`") # The outputs from each adapter are added together with a weight. # This means that the change in dimensions from downsampling must # be the same for all adapters. Inductively, it also means the # downscale_factor and total_downscale_factor must be the same for all # adapters. first_adapter_total_downscale_factor = adapters[0].total_downscale_factor first_adapter_downscale_factor = adapters[0].downscale_factor for idx in range(1, len(adapters)): if ( adapters[idx].total_downscale_factor != first_adapter_total_downscale_factor or adapters[idx].downscale_factor != first_adapter_downscale_factor ): raise ValueError( f"Expecting all adapters to have the same downscaling behavior, but got:\n" f"adapters[0].total_downscale_factor={first_adapter_total_downscale_factor}\n" f"adapters[0].downscale_factor={first_adapter_downscale_factor}\n" f"adapter[`{idx}`].total_downscale_factor={adapters[idx].total_downscale_factor}\n" f"adapter[`{idx}`].downscale_factor={adapters[idx].downscale_factor}" ) self.total_downscale_factor = first_adapter_total_downscale_factor self.downscale_factor = first_adapter_downscale_factor def forward(self, xs: torch.Tensor, adapter_weights: Optional[List[float]] = None) -> List[torch.Tensor]: r""" Args: xs (`torch.Tensor`): A tensor of shape (batch, channel, height, width) representing input images for multiple adapter models, concatenated along dimension 1(channel dimension). The `channel` dimension should be equal to `num_adapter` * number of channel per image. adapter_weights (`List[float]`, *optional*, defaults to None): A list of floats representing the weights which will be multiplied by each adapter's output before summing them together. If `None`, equal weights will be used for all adapters. """ if adapter_weights is None: adapter_weights = torch.tensor([1 / self.num_adapter] * self.num_adapter) else: adapter_weights = torch.tensor(adapter_weights) accume_state = None for x, w, adapter in zip(xs, adapter_weights, self.adapters): features = adapter(x) if accume_state is None: accume_state = features for i in range(len(accume_state)): accume_state[i] = w * accume_state[i] else: for i in range(len(features)): accume_state[i] += w * features[i] return accume_state def save_pretrained( self, save_directory: Union[str, os.PathLike], is_main_process: bool = True, save_function: Callable = None, safe_serialization: bool = True, variant: Optional[str] = None, ): """ Save a model and its configuration file to a specified directory, allowing it to be re-loaded with the `[`~models.adapter.MultiAdapter.from_pretrained`]` class method. Args: save_directory (`str` or `os.PathLike`): The directory where the model will be saved. If the directory does not exist, it will be created. is_main_process (`bool`, optional, defaults=True): Indicates whether current process is the main process or not. Useful for distributed training (e.g., TPUs) and need to call this function on all processes. In this case, set `is_main_process=True` only for the main process to avoid race conditions. save_function (`Callable`): Function used to save the state dictionary. Useful for distributed training (e.g., TPUs) to replace `torch.save` with another method. Can also be configured using`DIFFUSERS_SAVE_MODE` environment variable. safe_serialization (`bool`, optional, defaults=True): If `True`, save the model using `safetensors`. If `False`, save the model with `pickle`. variant (`str`, *optional*): If specified, weights are saved in the format `pytorch_model..bin`. """ idx = 0 model_path_to_save = save_directory for adapter in self.adapters: adapter.save_pretrained( model_path_to_save, is_main_process=is_main_process, save_function=save_function, safe_serialization=safe_serialization, variant=variant, ) idx += 1 model_path_to_save = model_path_to_save + f"_{idx}" @classmethod def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs): r""" Instantiate a pretrained `MultiAdapter` model from multiple pre-trained adapter models. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, set it back to training mode using `model.train()`. Warnings: *Weights from XXX not initialized from pretrained model* means that the weights of XXX are not pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning. *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, so those weights are discarded. Args: pretrained_model_path (`os.PathLike`): A path to a *directory* containing model weights saved using [`~diffusers.models.adapter.MultiAdapter.save_pretrained`], e.g., `./my_model_directory/adapter`. torch_dtype (`str` or `torch.dtype`, *optional*): Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype will be automatically derived from the model's weights. output_loading_info(`bool`, *optional*, defaults to `False`): Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more information about each option see [designing a device map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). max_memory (`Dict`, *optional*): A dictionary mapping device identifiers to their maximum memory. Default to the maximum memory available for each GPU and the available CPU RAM if unset. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading by not initializing the weights and only loading the pre-trained weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, setting this argument to `True` will raise an error. variant (`str`, *optional*): If specified, load weights from a `variant` file (*e.g.* pytorch_model..bin). `variant` will be ignored when using `from_flax`. use_safetensors (`bool`, *optional*, defaults to `None`): If `None`, the `safetensors` weights will be downloaded if available **and** if`safetensors` library is installed. If `True`, the model will be forcibly loaded from`safetensors` weights. If `False`, `safetensors` is not used. """ idx = 0 adapters = [] # load adapter and append to list until no adapter directory exists anymore # first adapter has to be saved under `./mydirectory/adapter` to be compliant with `DiffusionPipeline.from_pretrained` # second, third, ... adapters have to be saved under `./mydirectory/adapter_1`, `./mydirectory/adapter_2`, ... model_path_to_load = pretrained_model_path while os.path.isdir(model_path_to_load): adapter = T2IAdapter.from_pretrained(model_path_to_load, **kwargs) adapters.append(adapter) idx += 1 model_path_to_load = pretrained_model_path + f"_{idx}" logger.info(f"{len(adapters)} adapters loaded from {pretrained_model_path}.") if len(adapters) == 0: raise ValueError( f"No T2IAdapters found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}." ) return cls(adapters) class T2IAdapter(ModelMixin, ConfigMixin): r""" A simple ResNet-like model that accepts images containing control signals such as keyposes and depth. The model generates multiple feature maps that are used as additional conditioning in [`UNet2DConditionModel`]. The model's architecture follows the original implementation of [Adapter](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L97) and [AdapterLight](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L235). This model inherits from [`ModelMixin`]. Check the superclass documentation for the common methods, such as downloading or saving. Args: in_channels (`int`, *optional*, defaults to `3`): The number of channels in the adapter's input (*control image*). Set it to 1 if you're using a gray scale image. channels (`List[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The number of channels in each downsample block's output hidden state. The `len(block_out_channels)` determines the number of downsample blocks in the adapter. num_res_blocks (`int`, *optional*, defaults to `2`): Number of ResNet blocks in each downsample block. downscale_factor (`int`, *optional*, defaults to `8`): A factor that determines the total downscale factor of the Adapter. adapter_type (`str`, *optional*, defaults to `full_adapter`): Adapter type (`full_adapter` or `full_adapter_xl` or `light_adapter`) to use. """ @register_to_config def __init__( self, in_channels: int = 3, channels: List[int] = [320, 640, 1280, 1280], num_res_blocks: int = 2, downscale_factor: int = 8, adapter_type: str = "full_adapter", ): super().__init__() if adapter_type == "full_adapter": self.adapter = FullAdapter(in_channels, channels, num_res_blocks, downscale_factor) elif adapter_type == "full_adapter_xl": self.adapter = FullAdapterXL(in_channels, channels, num_res_blocks, downscale_factor) elif adapter_type == "light_adapter": self.adapter = LightAdapter(in_channels, channels, num_res_blocks, downscale_factor) else: raise ValueError( f"Unsupported adapter_type: '{adapter_type}'. Choose either 'full_adapter' or " "'full_adapter_xl' or 'light_adapter'." ) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: r""" This function processes the input tensor `x` through the adapter model and returns a list of feature tensors, each representing information extracted at a different scale from the input. The length of the list is determined by the number of downsample blocks in the Adapter, as specified by the `channels` and `num_res_blocks` parameters during initialization. """ return self.adapter(x) @property def total_downscale_factor(self): return self.adapter.total_downscale_factor @property def downscale_factor(self): """The downscale factor applied in the T2I-Adapter's initial pixel unshuffle operation. If an input image's dimensions are not evenly divisible by the downscale_factor then an exception will be raised. """ return self.adapter.unshuffle.downscale_factor # full adapter class FullAdapter(nn.Module): r""" See [`T2IAdapter`] for more information. """ def __init__( self, in_channels: int = 3, channels: List[int] = [320, 640, 1280, 1280], num_res_blocks: int = 2, downscale_factor: int = 8, ): super().__init__() in_channels = in_channels * downscale_factor**2 self.unshuffle = nn.PixelUnshuffle(downscale_factor) self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1) self.body = nn.ModuleList( [ AdapterBlock(channels[0], channels[0], num_res_blocks), *[ AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True) for i in range(1, len(channels)) ], ] ) self.total_downscale_factor = downscale_factor * 2 ** (len(channels) - 1) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: r""" This method processes the input tensor `x` through the FullAdapter model and performs operations including pixel unshuffling, convolution, and a stack of AdapterBlocks. It returns a list of feature tensors, each capturing information at a different stage of processing within the FullAdapter model. The number of feature tensors in the list is determined by the number of downsample blocks specified during initialization. """ x = self.unshuffle(x) x = self.conv_in(x) features = [] for block in self.body: x = block(x) features.append(x) return features class FullAdapterXL(nn.Module): r""" See [`T2IAdapter`] for more information. """ def __init__( self, in_channels: int = 3, channels: List[int] = [320, 640, 1280, 1280], num_res_blocks: int = 2, downscale_factor: int = 16, ): super().__init__() in_channels = in_channels * downscale_factor**2 self.unshuffle = nn.PixelUnshuffle(downscale_factor) self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1) self.body = [] # blocks to extract XL features with dimensions of [320, 64, 64], [640, 64, 64], [1280, 32, 32], [1280, 32, 32] for i in range(len(channels)): if i == 1: self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks)) elif i == 2: self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True)) else: self.body.append(AdapterBlock(channels[i], channels[i], num_res_blocks)) self.body = nn.ModuleList(self.body) # XL has only one downsampling AdapterBlock. self.total_downscale_factor = downscale_factor * 2 def forward(self, x: torch.Tensor) -> List[torch.Tensor]: r""" This method takes the tensor x as input and processes it through FullAdapterXL model. It consists of operations including unshuffling pixels, applying convolution layer and appending each block into list of feature tensors. """ x = self.unshuffle(x) x = self.conv_in(x) features = [] for block in self.body: x = block(x) features.append(x) return features class AdapterBlock(nn.Module): r""" An AdapterBlock is a helper model that contains multiple ResNet-like blocks. It is used in the `FullAdapter` and `FullAdapterXL` models. Args: in_channels (`int`): Number of channels of AdapterBlock's input. out_channels (`int`): Number of channels of AdapterBlock's output. num_res_blocks (`int`): Number of ResNet blocks in the AdapterBlock. down (`bool`, *optional*, defaults to `False`): If `True`, perform downsampling on AdapterBlock's input. """ def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False): super().__init__() self.downsample = None if down: self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True) self.in_conv = None if in_channels != out_channels: self.in_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.resnets = nn.Sequential( *[AdapterResnetBlock(out_channels) for _ in range(num_res_blocks)], ) def forward(self, x: torch.Tensor) -> torch.Tensor: r""" This method takes tensor x as input and performs operations downsampling and convolutional layers if the self.downsample and self.in_conv properties of AdapterBlock model are specified. Then it applies a series of residual blocks to the input tensor. """ if self.downsample is not None: x = self.downsample(x) if self.in_conv is not None: x = self.in_conv(x) x = self.resnets(x) return x class AdapterResnetBlock(nn.Module): r""" An `AdapterResnetBlock` is a helper model that implements a ResNet-like block. Args: channels (`int`): Number of channels of AdapterResnetBlock's input and output. """ def __init__(self, channels: int): super().__init__() self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.act = nn.ReLU() self.block2 = nn.Conv2d(channels, channels, kernel_size=1) def forward(self, x: torch.Tensor) -> torch.Tensor: r""" This method takes input tensor x and applies a convolutional layer, ReLU activation, and another convolutional layer on the input tensor. It returns addition with the input tensor. """ h = self.act(self.block1(x)) h = self.block2(h) return h + x # light adapter class LightAdapter(nn.Module): r""" See [`T2IAdapter`] for more information. """ def __init__( self, in_channels: int = 3, channels: List[int] = [320, 640, 1280], num_res_blocks: int = 4, downscale_factor: int = 8, ): super().__init__() in_channels = in_channels * downscale_factor**2 self.unshuffle = nn.PixelUnshuffle(downscale_factor) self.body = nn.ModuleList( [ LightAdapterBlock(in_channels, channels[0], num_res_blocks), *[ LightAdapterBlock(channels[i], channels[i + 1], num_res_blocks, down=True) for i in range(len(channels) - 1) ], LightAdapterBlock(channels[-1], channels[-1], num_res_blocks, down=True), ] ) self.total_downscale_factor = downscale_factor * (2 ** len(channels)) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: r""" This method takes the input tensor x and performs downscaling and appends it in list of feature tensors. Each feature tensor corresponds to a different level of processing within the LightAdapter. """ x = self.unshuffle(x) features = [] for block in self.body: x = block(x) features.append(x) return features class LightAdapterBlock(nn.Module): r""" A `LightAdapterBlock` is a helper model that contains multiple `LightAdapterResnetBlocks`. It is used in the `LightAdapter` model. Args: in_channels (`int`): Number of channels of LightAdapterBlock's input. out_channels (`int`): Number of channels of LightAdapterBlock's output. num_res_blocks (`int`): Number of LightAdapterResnetBlocks in the LightAdapterBlock. down (`bool`, *optional*, defaults to `False`): If `True`, perform downsampling on LightAdapterBlock's input. """ def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False): super().__init__() mid_channels = out_channels // 4 self.downsample = None if down: self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True) self.in_conv = nn.Conv2d(in_channels, mid_channels, kernel_size=1) self.resnets = nn.Sequential(*[LightAdapterResnetBlock(mid_channels) for _ in range(num_res_blocks)]) self.out_conv = nn.Conv2d(mid_channels, out_channels, kernel_size=1) def forward(self, x: torch.Tensor) -> torch.Tensor: r""" This method takes tensor x as input and performs downsampling if required. Then it applies in convolution layer, a sequence of residual blocks, and out convolutional layer. """ if self.downsample is not None: x = self.downsample(x) x = self.in_conv(x) x = self.resnets(x) x = self.out_conv(x) return x class LightAdapterResnetBlock(nn.Module): """ A `LightAdapterResnetBlock` is a helper model that implements a ResNet-like block with a slightly different architecture than `AdapterResnetBlock`. Args: channels (`int`): Number of channels of LightAdapterResnetBlock's input and output. """ def __init__(self, channels: int): super().__init__() self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.act = nn.ReLU() self.block2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) def forward(self, x: torch.Tensor) -> torch.Tensor: r""" This function takes input tensor x and processes it through one convolutional layer, ReLU activation, and another convolutional layer and adds it to input tensor. """ h = self.act(self.block1(x)) h = self.block2(h) return h + x