# Copyright 2024 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput
class DDPMParallelSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
    if alpha_transform_type == "cosine":

        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
        betas (`torch.Tensor`):
            the betas that the scheduler is being initialized with.

    Returns:
        `torch.Tensor`: rescaled betas with zero terminal SNR
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, `squaredcos_cap_v2` or `sigmoid`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample for numerical stability.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            Note that the thresholding method is unsuitable for latent-space diffusion models (such as
            stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, default `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
            Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
        steps_offset (`int`, default `0`):
            An offset added to the inference steps, as required by some model families.
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1
    _is_ode_scheduler = False

    @register_to_config
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.__init__
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
        rescale_betas_zero_snr: bool = False,
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
        else:
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")

        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.custom_timesteps = False
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())

        self.variance_type = variance_type

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.scale_model_input
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.Tensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `torch.Tensor`:
                A scaled input sample.
        """
        return sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.set_timesteps
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
                `timesteps` must be `None`.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.

        """
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False

            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

        self.timesteps = torch.from_numpy(timesteps).to(device)

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._get_variance
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
        prev_t = self.previous_timestep(t)

        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev

        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t

        # we always take the log of variance, so clamp it to ensure it's not 0
        variance = torch.clamp(variance, min=1e-20)

        if variance_type is None:
            variance_type = self.config.variance_type

        # hacks - were probably added for training stability
        if variance_type == "fixed_small":
            variance = variance
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif variance_type == "fixed_small_log":
            variance = torch.log(variance)
            variance = torch.exp(0.5 * variance)
        elif variance_type == "fixed_large":
            variance = current_beta_t
        elif variance_type == "fixed_large_log":
            # Glide max_log
            variance = torch.log(current_beta_t)
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = torch.log(variance)
            max_log = torch.log(current_beta_t)
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    def step(
        self,
        model_output: torch.Tensor,
        timestep: int,
        sample: torch.Tensor,
        generator=None,
        return_dict: bool = True,
    ) -> Union[DDPMParallelSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.Tensor`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.Tensor`):
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than DDPMParallelSchedulerOutput class

        Returns:
            [`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
        t = timestep

        prev_t = self.previous_timestep(t)

        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

        # 1. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
            )

        # 3. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        # 6. Add noise
        variance = 0
        if t > 0:
            device = model_output.device
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise

        pred_prev_sample = pred_prev_sample + variance

        if not return_dict:
            return (
                pred_prev_sample,
                pred_original_sample,
            )

        return DDPMParallelSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)

    def batch_step_no_noise(
        self,
        model_output: torch.Tensor,
        timesteps: List[int],
        sample: torch.Tensor,
    ) -> torch.Tensor:
        """
        Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once.
        Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise
        is pre-sampled by the pipeline.

        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.Tensor`): direct output from learned diffusion model.
            timesteps (`List[int]`):
                current discrete timesteps in the diffusion chain. This is now a list of integers.
            sample (`torch.Tensor`):
                current instance of sample being created by diffusion process.

        Returns:
            `torch.Tensor`: sample tensor at previous timestep.
        """
        t = timesteps
        num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
        prev_t = t - self.config.num_train_timesteps // num_inference_steps

        t = t.view(-1, *([1] * (model_output.ndim - 1)))
        prev_t = prev_t.view(-1, *([1] * (model_output.ndim - 1)))

        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            pass

        # 1. compute alphas, betas
        self.alphas_cumprod = self.alphas_cumprod.to(model_output.device)
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)]
        alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0)

        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMParallelScheduler."
            )

        # 3. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        return pred_prev_sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
        self,
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.IntTensor,
    ) -> torch.Tensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

    def __len__(self):
        return self.config.num_train_timesteps

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t