# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil from pathlib import Path import torch from ..logging import get_logger from .constants import FSDP_MODEL_NAME, OPTIMIZER_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_NAME from .modeling import is_peft_model from .other import save from .versions import is_torch_version logger = get_logger(__name__) def _get_model_state_dict(model, adapter_only=False): if adapter_only and is_peft_model(model): from peft import get_peft_model_state_dict return get_peft_model_state_dict(model, adapter_name=model.active_adapter) else: return model.state_dict() def _set_model_state_dict(model, state_dict, adapter_only=False): if adapter_only and is_peft_model(model): from peft import set_peft_model_state_dict return set_peft_model_state_dict(model, state_dict, adapter_name=model.active_adapter) else: return model.load_state_dict(state_dict) def save_fsdp_model(fsdp_plugin, accelerator, model, output_dir, model_index=0, adapter_only=False): # Note: We import here to reduce import time from general modules, and isolate outside dependencies import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultSavePlanner from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType os.makedirs(output_dir, exist_ok=True) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: # FSDP raises error when single GPU is used with `offload_to_cpu=True` for FULL_STATE_DICT # so, only enable it when num_processes>1 is_multi_process = accelerator.num_processes > 1 fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process fsdp_plugin.state_dict_config.rank0_only = is_multi_process with FSDP.state_dict_type( model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): state_dict = _get_model_state_dict(model, adapter_only=adapter_only) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin" output_model_file = os.path.join(output_dir, weights_name) if accelerator.process_index == 0: logger.info(f"Saving model to {output_model_file}") torch.save(state_dict, output_model_file) logger.info(f"Model saved to {output_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: weights_name = ( f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) output_model_file = os.path.join(output_dir, weights_name) logger.info(f"Saving model to {output_model_file}") torch.save(state_dict, output_model_file) logger.info(f"Model saved to {output_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: ckpt_dir = os.path.join(output_dir, f"{FSDP_MODEL_NAME}_{model_index}") os.makedirs(ckpt_dir, exist_ok=True) logger.info(f"Saving model to {ckpt_dir}") state_dict = {"model": state_dict} dist_cp.save_state_dict( state_dict=state_dict, storage_writer=dist_cp.FileSystemWriter(ckpt_dir), planner=DefaultSavePlanner(), ) logger.info(f"Model saved to {ckpt_dir}") def load_fsdp_model(fsdp_plugin, accelerator, model, input_dir, model_index=0, adapter_only=False): # Note: We import here to reduce import time from general modules, and isolate outside dependencies import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType accelerator.wait_for_everyone() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: # FSDP raises error when single GPU is used with `offload_to_cpu=True` for FULL_STATE_DICT # so, only enable it when num_processes>1 is_multi_process = accelerator.num_processes > 1 fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process fsdp_plugin.state_dict_config.rank0_only = is_multi_process with FSDP.state_dict_type( model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(model) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin" input_model_file = os.path.join(input_dir, weights_name) logger.info(f"Loading model from {input_model_file}") state_dict = torch.load(input_model_file) logger.info(f"Model loaded from {input_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: weights_name = ( f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) input_model_file = os.path.join(input_dir, weights_name) logger.info(f"Loading model from {input_model_file}") state_dict = torch.load(input_model_file) logger.info(f"Model loaded from {input_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: ckpt_dir = ( os.path.join(input_dir, f"{FSDP_MODEL_NAME}_{model_index}") if f"{FSDP_MODEL_NAME}" not in input_dir else input_dir ) logger.info(f"Loading model from {ckpt_dir}") state_dict = {"model": _get_model_state_dict(model, adapter_only=adapter_only)} dist_cp.load_state_dict( state_dict=state_dict, storage_reader=dist_cp.FileSystemReader(ckpt_dir), planner=DefaultLoadPlanner(), ) state_dict = state_dict["model"] logger.info(f"Model loaded from {ckpt_dir}") load_result = _set_model_state_dict(model, state_dict, adapter_only=adapter_only) return load_result def save_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, output_dir, optimizer_index=0): # Note: We import here to reduce import time from general modules, and isolate outside dependencies import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultSavePlanner from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType os.makedirs(output_dir, exist_ok=True) with FSDP.state_dict_type( model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): optim_state = FSDP.optim_state_dict(model, optimizer) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: optim_state_name = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) output_optimizer_file = os.path.join(output_dir, optim_state_name) logger.info(f"Saving Optimizer state to {output_optimizer_file}") torch.save(optim_state, output_optimizer_file) logger.info(f"Optimizer state saved in {output_optimizer_file}") else: ckpt_dir = os.path.join(output_dir, f"{OPTIMIZER_NAME}_{optimizer_index}") os.makedirs(ckpt_dir, exist_ok=True) logger.info(f"Saving Optimizer state to {ckpt_dir}") dist_cp.save_state_dict( state_dict={"optimizer": optim_state}, storage_writer=dist_cp.FileSystemWriter(ckpt_dir), planner=DefaultSavePlanner(), ) logger.info(f"Optimizer state saved in {ckpt_dir}") def load_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, input_dir, optimizer_index=0, adapter_only=False): # Note: We import here to reduce import time from general modules, and isolate outside dependencies import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType accelerator.wait_for_everyone() with FSDP.state_dict_type( model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: optim_state = None if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: optimizer_name = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) input_optimizer_file = os.path.join(input_dir, optimizer_name) logger.info(f"Loading Optimizer state from {input_optimizer_file}") optim_state = torch.load(input_optimizer_file) logger.info(f"Optimizer state loaded from {input_optimizer_file}") else: ckpt_dir = ( os.path.join(input_dir, f"{OPTIMIZER_NAME}_{optimizer_index}") if f"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(f"Loading Optimizer from {ckpt_dir}") optim_state = load_sharded_optimizer_state_dict( model_state_dict=_get_model_state_dict(model, adapter_only=adapter_only), optimizer_key="optimizer", storage_reader=dist_cp.FileSystemReader(ckpt_dir), ) optim_state = optim_state["optimizer"] logger.info(f"Optimizer loaded from {ckpt_dir}") flattened_osd = FSDP.optim_state_dict_to_load(model=model, optim=optimizer, optim_state_dict=optim_state) optimizer.load_state_dict(flattened_osd) def _distributed_checkpoint_to_merged_weights(checkpoint_dir: str, save_path: str, safe_serialization: bool = True): """ Passthrough to `torch.distributed.checkpoint.format_utils.dcp_to_torch_save` Will save under `save_path` as either `model.safetensors` or `pytorch_model.bin`. """ # Note: We import here to reduce import time from general modules, and isolate outside dependencies import torch.distributed.checkpoint as dist_cp import torch.distributed.checkpoint.format_utils as dist_cp_format_utils state_dict = {} save_path = Path(save_path) save_path.mkdir(exist_ok=True) dist_cp_format_utils._load_state_dict( state_dict, storage_reader=dist_cp.FileSystemReader(checkpoint_dir), planner=dist_cp_format_utils._EmptyStateDictLoadPlanner(), no_dist=True, ) save_path = save_path / SAFE_WEIGHTS_NAME if safe_serialization else save_path / WEIGHTS_NAME # To handle if state is a dict like {model: {...}} if len(state_dict.keys()) == 1: state_dict = state_dict[list(state_dict)[0]] save(state_dict, save_path, safe_serialization=safe_serialization) return save_path def merge_fsdp_weights( checkpoint_dir: str, output_path: str, safe_serialization: bool = True, remove_checkpoint_dir: bool = False ): """ Merge the weights from sharded FSDP model checkpoints into a single combined checkpoint. Should be used if `SHARDED_STATE_DICT` was used for the model. Weights will be saved to `{output_path}/model.safetensors` if `safe_serialization` else `pytorch_model.bin`. Note: this is a CPU-bound process. Args: checkpoint_dir (`str`): The directory containing the FSDP checkpoints (can be either the model or optimizer). output_path (`str`): The path to save the merged checkpoint. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the merged weights with safetensors (recommended). remove_checkpoint_dir (`bool`, *optional*, defaults to `False`): Whether to remove the checkpoint directory after merging. """ from accelerate.state import PartialState if not is_torch_version(">=", "2.3.0"): raise ValueError("`merge_fsdp_weights` requires PyTorch >= 2.3.0`") # To setup `save` to work state = PartialState() if state.is_main_process: logger.info(f"Merging FSDP weights from {checkpoint_dir}") save_path = _distributed_checkpoint_to_merged_weights(checkpoint_dir, output_path, safe_serialization) logger.info(f"Successfully merged FSDP weights and saved to {save_path}") if remove_checkpoint_dir: logger.info(f"Removing old checkpoint directory {checkpoint_dir}") shutil.rmtree(checkpoint_dir) state.wait_for_everyone()