Spaces:
Paused
Paused
| from dataclasses import dataclass | |
| from functools import partial | |
| import torch | |
| from torch.multiprocessing.reductions import StorageWeakRef | |
| import torch.utils._pytree as pytree | |
| from torch._C import DispatchKey, DispatchKeySet, ExcludeDispatchKeyGuard | |
| from torch._functorch.eager_transforms import _unwrap_all_tensors_from_functional, _wrap_all_tensors_to_functional, functionalize | |
| from torch._ops import PyOperator | |
| from torch._subclasses.fake_tensor import FakeTensorMode | |
| from torch.fx.experimental.proxy_tensor import ( | |
| disable_proxy_modes_tracing, | |
| ProxyTorchDispatchMode, | |
| make_fx, | |
| track_tensor_tree, | |
| unwrap_proxy, | |
| ) | |
| from torch.fx.passes.shape_prop import _extract_tensor_metadata | |
| from torch.utils._python_dispatch import ( | |
| _get_current_dispatch_mode, | |
| _pop_mode_temporarily, | |
| ) | |
| from torch.utils._pytree import tree_flatten | |
| class UnsupportedAliasMutationException(RuntimeError): | |
| reason: str | |
| """ | |
| We're going to define a `cond` operation. | |
| In order to do this, we need implementations for each of the dispatch keys. | |
| """ | |
| cond = PyOperator("cond") | |
| def trace_cond(proxy_mode, func_overload, pred, true_fn, false_fn, operands): | |
| assert isinstance(operands, (list, tuple)), "Cond operands must be a list or tuple of tensors" | |
| assert all(isinstance(o, torch.Tensor) for o in operands), "Cond operands must be a list of tensors" | |
| with disable_proxy_modes_tracing(): | |
| true_graph = make_fx(true_fn)(*operands) | |
| false_graph = make_fx(false_fn)(*operands) | |
| true_outs = [] | |
| false_outs = [] | |
| for node in true_graph.graph.nodes: | |
| if node.op == 'output': | |
| true_outs.extend(node.args) | |
| for node in false_graph.graph.nodes: | |
| if node.op == 'output': | |
| false_outs.extend(node.args) | |
| flat_true_outs, _ = pytree.tree_flatten(true_outs) | |
| flat_false_outs, _ = pytree.tree_flatten(false_outs) | |
| assert(len(flat_true_outs) == len(flat_false_outs)) | |
| for i in range(0, len(flat_true_outs)): | |
| true_out = flat_true_outs[i] | |
| false_out = flat_false_outs[i] | |
| assert true_out.meta['tensor_meta'] == false_out.meta['tensor_meta'] | |
| # There are probably better ways - I know that create_arg has some self incrementing name | |
| # magic to it, but since we explicitly have to get the name for register_module, | |
| # I was not sure how to do that. This kinda simulates it. | |
| next_name = None | |
| i = 0 | |
| while not next_name: | |
| candidate = f"true_graph_{i}" | |
| if hasattr(proxy_mode.tracer.root, candidate): | |
| i += 1 | |
| else: | |
| next_name = candidate | |
| true_name = next_name | |
| false_name = f"false_graph_{i}" | |
| assert(not hasattr(proxy_mode.tracer.root, false_name)) | |
| proxy_mode.tracer.root.register_module(true_name, true_graph) | |
| proxy_mode.tracer.root.register_module(false_name, false_graph) | |
| args = (pred, true_graph, false_graph, operands) | |
| proxy_args = pytree.tree_map(partial(unwrap_proxy, proxy_mode), args) | |
| out_proxy = proxy_mode.tracer.create_proxy('call_function', func_overload, proxy_args, {}, | |
| name="conditional") | |
| # At this point, we're *guaranteed* that whether an output came from the | |
| # true or false branch is indistinguishable. So, as this is just for tracing | |
| # purposes, choose the true branch. | |
| # TODO: Uhh.... it shouldn't matter, but changing this to true_fn results in | |
| # a FakeTensorMode error : | |
| # `Current active mode <class 'torch._subclasses.fake_tensor.FakeTensorMode'> not registered` | |
| out = false_fn(*operands) | |
| return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer) | |
| def cond_dense(pred, true_fn, false_fn, operands): | |
| mode = _get_current_dispatch_mode() | |
| assert (mode is None), "Mode should never be enabled for CPU/CUDA key" | |
| if pred: | |
| return true_fn(*operands) | |
| else: | |
| return false_fn(*operands) | |
| def cond_autograd(pred, true_fn, false_fn, *operands): | |
| # TODO: support autograd | |
| flat_operands, _ = tree_flatten([true_fn, false_fn] + [operands]) | |
| assert all([not f.requires_grad for f in flat_operands | |
| if isinstance(f, torch.Tensor)]) | |
| guard = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.AutogradCPU)) | |
| return cond(pred, true_fn, false_fn, *operands) | |
| def inner(pred, true_fn, false_fn, operands): | |
| mode = _get_current_dispatch_mode() | |
| assert (mode is not None), "Mode should always be enabled for python fallback key" | |
| with _pop_mode_temporarily() as mode: | |
| res = trace_cond(mode, cond, pred, true_fn, false_fn, operands) | |
| return res | |
| def cond_fake_tensor_mode(pred, true_fn, false_fn, operands): | |
| true_outs = true_fn(*operands) | |
| flat_true_outs, _ = pytree.tree_flatten(true_outs) | |
| flat_false_outs, _ = pytree.tree_flatten(false_fn(*operands)) | |
| if len(flat_true_outs) != len(flat_false_outs): | |
| raise RuntimeError("Unmatched number of outputs from cond() branches.") | |
| for true_out, false_out in zip(flat_true_outs, flat_false_outs): | |
| true_meta = _extract_tensor_metadata(true_out) | |
| false_meta = _extract_tensor_metadata(false_out) | |
| if true_meta != false_meta: | |
| raise RuntimeError( | |
| f"Unmatched tensor metadata from cond() branches.\ntrue branch: {true_meta}, false branch: {false_meta}") | |
| return true_outs | |
| # We cannot directly call fallthrough here due to issue #89037. | |
| def cond_python_dispatcher(*args): | |
| _ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.PythonDispatcher)) | |
| return cond(*args) | |
| def _has_potential_branch_input_mutation(branch, fake_inputs): | |
| """ | |
| Dispatch-trace the branch with fake inputs and check if | |
| producing graph has mutable op on the input. This is | |
| bit restrictive as the branch must be traceable. | |
| """ | |
| try: | |
| gm = make_fx(branch)(*fake_inputs) | |
| except UnsupportedAliasMutationException: | |
| # this can happen when nested cond is | |
| # functionalized | |
| return True | |
| except Exception as e: | |
| raise e | |
| input_nodes = set() | |
| for node in gm.graph.nodes: | |
| if node.op == "placeholder": | |
| input_nodes.add(node) | |
| if node.op == "call_function": | |
| target = node.target | |
| if isinstance(target, torch._ops.OpOverload) and target._schema.is_mutable: | |
| for arg in node.args: | |
| if arg in input_nodes: | |
| return True | |
| return False | |
| def _has_potential_branch_input_alias(branch, fake_inputs): | |
| """ | |
| Dispatch-trace the branch with fake inputs and check if | |
| producing graph has output aliasing the branch input. This is | |
| bit restrictive as the branch must be traceable. | |
| """ | |
| try: | |
| gm = make_fx(branch)(*fake_inputs) | |
| except UnsupportedAliasMutationException: | |
| # this can happen when nested cond is | |
| # functionalized | |
| return True | |
| except Exception as e: | |
| raise e | |
| input_storages = set() | |
| for node in gm.graph.nodes: | |
| if node.op == "placeholder": | |
| input_storages.add(StorageWeakRef(node.meta['val']._typed_storage())) | |
| outs, _ = pytree.tree_flatten(gm(*fake_inputs)) | |
| for out in outs: | |
| if isinstance(out, torch.Tensor) and StorageWeakRef(out._typed_storage()) in input_storages: | |
| return True | |
| return False | |
| def cond_functionalize(interpreter, pred, true_fn, false_fn, inputs): | |
| """ | |
| Functionalization implementation for torch.cond. Currently: | |
| 1. We don't allow any input mutation inside the branches | |
| 2. Our check for above condition is not exhaustive | |
| """ | |
| reapply_views = interpreter.functionalize_add_back_views() | |
| mode = 'mutations_and_views' if reapply_views else 'mutations' | |
| # At this point, we will see functionalized tensors, so need to unwrap them first | |
| unwrapped_inputs = _unwrap_all_tensors_from_functional(inputs, reapply_views=reapply_views) | |
| unwrapped_pred = _unwrap_all_tensors_from_functional(pred, reapply_views=reapply_views) | |
| functional_true_fn = functionalize(true_fn, remove=mode) | |
| functional_false_fn = functionalize(false_fn, remove=mode) | |
| with interpreter.lower(): | |
| fake_tensor_mode = FakeTensorMode() | |
| with fake_tensor_mode as ft_mode: | |
| for branch in [functional_true_fn, functional_false_fn]: | |
| def convert(x): | |
| return ft_mode.fake_tensor_converter(ft_mode, x) | |
| fake_inputs = pytree.tree_map_only(torch.Tensor, convert, unwrapped_inputs) | |
| if _has_potential_branch_input_mutation(branch, fake_inputs): | |
| raise UnsupportedAliasMutationException("One of torch.cond branch " | |
| "might be modifying the input!") | |
| for branch in [true_fn, false_fn]: | |
| def convert(x): | |
| return ft_mode.fake_tensor_converter(ft_mode, x) | |
| fake_inputs = pytree.tree_map_only(torch.Tensor, convert, unwrapped_inputs) | |
| if _has_potential_branch_input_alias(branch, fake_inputs): | |
| raise UnsupportedAliasMutationException("One of torch.cond branch " | |
| "might be aliasing the input!") | |
| cond_return = cond(unwrapped_pred, functional_true_fn, functional_false_fn, unwrapped_inputs) | |
| return _wrap_all_tensors_to_functional(cond_return, level=interpreter.level()) | |
| # TODO(voz): Make this automatic for keys, this is very ugly atm | |
| cond.fallthrough(DispatchKey.PythonTLSSnapshot) | |
| cond.fallthrough(DispatchKey.ADInplaceOrView) | |
| cond.fallthrough(DispatchKey.BackendSelect) | |